首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity‐dependent selective reduction of synaptic efficacy is expressed in an in vitro system involving mouse spinal cord and muscle cells. Thrombin or electrical stimulation of the innervating axons induces a decrease in neuromuscular synapse strength, and a specific thrombin inhibitor, hirudin, blocks the electrically evoked down‐regulation of synapse effectiveness. We further demonstrate that a thrombin receptor‐activating peptide (TRAP), SFLLRNPNDKYEPF, produces a decrement of synapse strength. Both TRAP and electrically evoked synapse decrement are prevented by the specific protein kinase C blocker calphostin C, and the TRAP‐evoked synapse decrement is unaffected by a specific protein kinase A blocker, H‐89. Thus, we propose that muscle activity, thrombin release, and thrombin receptor and PKC activation are initial steps in the process of the activity‐dependent synapse reduction expressed in our system. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 369–381, 1999  相似文献   

2.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down-regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity-dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity-dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output.  相似文献   

3.
The effect of action potentials on elimination of mouse neuromuscular junctions (NMJ) was studied in a three compartment cell culture preparation. Axons from superior cervical ganglion or ventral spinal cord neurons in two lateral compartments formed multiple neuromuscular junctions with muscle cells in a central compartment. The loss of synapses over a 2–7-day period was determined by serial electrophysiological recording and a functional assay. Electrical stimulation of axons from one side compartment during this period, using 30-Hz bursts of 2-s duration, repeated at 10-s intervals, caused a significant increase in synapse elimination compared to unstimulated cultures (p< 0.001). The extent of homosynaptic and heterosynaptic elimination was comparable, i. e., of the 226 functional synapses of each type studied, 111 (49%) of the synapses that had been stimulated were eliminated, and 87 (39%) of unstimulated synapses on the same muscle cells were eliminated. Also, simultaneous bilateral stimulation caused significantly greater elimination of synapses than unilateral stimulation (p< 0.005). These observations are contrary to the Hebbian hypothesis of synaptic plasticity. A spatial effect of stimulus-induced synapse elimination was also evident following simultaneous bilateral stimulation. Prior to stimulation, most muscle cells were innervated by axons from both side compartments, but after bilateral stimulation, muscle cells were predominantly unilaterally innervated by axons from the closer compartment. These experiments suggest that synapse elimination at the NMJ is an activity-dependent process, but it does not follow Hebbian or anti-Hebbian rules of synaptic plasticity. Rather, elimination is a consequence of postsynaptic activation and a function of location of the muscle cell relative to the neuron. An interaction between spatial and activity-dependent effects on synapse elimination could help produce optimal refinement of synaptic connections during postnatal development. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Genetic analysis of the Drosophila larval neuromuscular junction has identified some of the key molecules that regulate synaptic plasticity. Among these molecules, the expression level of Fasciclin II (FasII), a homophilic cell adhesion molecule, is critically important for determining the final form of the neuromuscular junction. Genetic reduction of FasII expression by 50% yields more elaborate nerve terminals, while a greater reduction in expression, to 10% of wild‐type, yields a substantial reduction in the nerve terminal morphology. Importantly, regulation of FasII expression seems to be the final output for several genetic manipulations that transform NMJ morphology. In an effort to understand the importance of this regulatory pathway in the normal animal, we have undertaken studies to identify environmental cues that might be important for initiating FasII‐dependent changes in synaptic plasticity. Here we report on the relationship between larval population density and synaptic morphology, synaptic strength, and FasII levels. We raised Drosophila larvae under conditions of increasing population density and found an inverse exponential relationship between population density and the number of synaptic boutons, the number of branches, and the length of branches. We also observed population‐dependent alteration in FasII levels, with lower densities having less FasII at the synapse. The correlation between density and morphological change was abrogated in larvae constitutively expressing FasII, and in wild‐type larvae grown on soft culture medium. Together these data show that environmental cues can induce regulation of FasII. Interestingly, however, the quantal content of synaptic transmission was not different among the different population densities, suggesting that other factors contribute to maintaining synaptic strength at a defined level. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

5.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

6.
Electrical activity during early development affects the development and maintenance of synapses (Spitzer [2006]: Nature 4447:707-712), but the intercellular signals regulating maintenance of synapses are not well identified. At the neuromuscular junction, adenosine 5-triphosphate (ATP) is coreleased with acetylcholine at activated nerve terminals to modulate synaptic function. Here we use cocultured mouse motor neurons and muscle cells in a three-compartment cell culture chamber to test whether endogenously released ATP plays a role in activity-dependent maintenance of neuromuscular synapses. The results suggest that ATP release at the synapse counters the negative effect of electrical activity, thus stabilizing activated synapses. Confirming our previous work (Li et al. [2001]: Nat Neurosci 4:871-872), we found that in doubly innervated muscles, electrical stimulation induced heterosynaptic downregulation of the nonstimulated convergent input to the muscle fiber with no or little change of the stimulated inputs. However, in preparations that were stimulated in the presence of apyrase, an enzyme that degrades extracellular ATP, synapse downregulation of stimulated inputs was substantial and significant, and end plate potentials were reduced. Apyrase treatment for 20 h in the absence of stimulation did result in moderate diminution, but this was prevented by blocking spontaneous neural activity with tetrodotoxin. The P2 receptor blocker, suramin, also induced activity-dependent synapse diminution. The decrease in synaptic efficacy produced by prolonged stimulation in the presence of apyrase persisted for greater than 20 h, consistent with a developmental time-course and distinct from the rapid neuromodulatory actions of ATP that have been demonstrated by others. We conclude that extracellular ATP promotes stabilization of the neuromuscular junction and may play a role in activity-dependent synaptic modification during development.  相似文献   

7.
Synapse elimination at the vertebrate neuromuscular junction reduces a polyinnervated population of muscle fibers to a monoinnervated state. The function of this developmental phenomenon (if any) is unproven. A theoretical analysis of Hebbian (correlation) rules connecting presynaptic and postsynaptic activity and synaptic strength at the neuromuscular junction is presented. The following points are demonstrated: (1) Correlational competition leads to the reduction of polyinnervation to a stable monoinnervated state; (2) the competition gives rise to the size principle over a wide range of the plausible parameter space; (3) over a significant subrange, the competition selectively eliminates topographically incorrect synapses; and (4) in cases in which topographic projection errors overwhelm the system, both error correction and the development of the size principle are disrupted. Correlational competition may explain contradictory experimental results concerning the effects of stimulating or silencing subpopulations of motor neurons. It may also explain an otherwise puzzling instance of a breakdown in the size principle seen in humans undergoing neural regeneration. Taken together, these findings suggest a novel hypothesis for the function of synapse elimination at the neuromuscular junction: the establishment of the size principle. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N‐terminal region of agrin binds tightly to basal lamina, while the C‐terminal region interacts with a muscle‐specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase‐3 (MMP‐3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP‐3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP‐3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP‐3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP‐3 treatment does not alter anti‐laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP‐3 at the neuromuscular junction and that MMP‐3 specifically removes agrin from synaptic basal lamina. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 140–149, 2000  相似文献   

9.
In Drosophila, the secreted signaling molecule Jelly Belly (Jeb) activates anaplastic lymphoma kinase (Alk), a receptor tyrosine kinase, in multiple developmental and adult contexts. We have shown previously that Jeb and Alk are highly enriched at Drosophila synapses within the CNS neuropil and neuromuscular junction (NMJ) and postulated a conserved intercellular signaling function. At the embryonic and larval NMJ, Jeb is localized in the motor neuron presynaptic terminal whereas Alk is concentrated in the muscle postsynaptic domain surrounding boutons, consistent with anterograde trans‐synaptic signaling. Here, we show that neurotransmission is regulated by Jeb secretion by functional inhibition of Jeb–Alk signaling. Jeb is a novel negative regulator of neuromuscular transmission. Reduction or inhibition of Alk function results in enhanced synaptic transmission. Activation of Alk conversely inhibits synaptic transmission. Restoration of wild‐type postsynaptic Alk expression in Alk partial loss‐of‐function mutants rescues NMJ transmission phenotypes and confirms that postsynaptic Alk regulates NMJ transmission. The effects of impaired Alk signaling on neurotransmission are observed in the absence of associated changes in NMJ structure. Complete removal of Jeb in motor neurons, however, disrupts both presynaptic bouton architecture and postsynaptic differentiation. Nonphysiologic activation of Alk signaling also negatively regulates NMJ growth. Activation of Jeb–Alk signaling triggers the Ras‐MAP kinase cascade in both pre‐ and postsynaptic compartments. These novel roles for Jeb–Alk signaling in the modulation of synaptic function and structure have potential implications for recently reported Alk functions in human addiction, retention of spatial memory, cognitive dysfunction in neurofibromatosis, and pathogenesis of amyotrophic lateral sclerosis. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

10.
11.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   

12.
13.
Little is known about the effects of aging on synapses in the mammalian nervous system. We examined the innervation of individual mouse submandibular ganglion (SMG) neurons for evidence of age‐related changes in synapse efficacy and number. For approximately 85% of adult life expectancy (30 months) the efficacy of synaptic transmission, as determined by excitatory postsynaptic potential (EPSP) amplitudes, remains constant. Similarly, the number of synapses contacting individual SMG neurons is also unchanged. After 30 months of age, however, some neurons (23%) dramatically lose synaptic input exhibiting both smaller EPSP amplitude and fewer synaptic boutons. Attenuation of both the amplitude and frequency of miniature EPSPs was also observed in neurons from aged animals. Electron micrographs revealed that, although there were many vesicle‐laden preganglionic axonal processes in the vicinity of the postsynaptic membrane, the number of synaptic contacts was significantly lower in old animals. These results demonstrate primary, age‐associated synapse elimination with functional consequences that cannot be explained by pre‐ or postsynaptic cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 214–226, 2004  相似文献   

14.
15.
Little is known about how adhesion molecules on APCs accumulate at immunological synapses. We show here that ICAM‐1 on APCs is continuously internalized and rapidly recycled back to the interface after antigen‐priming T‐cell contact. The internalization rate is high in APCs, including Raji B cells and dendritic cells, but low in endothelial cells. Internalization is significantly reduced by inhibitors of Na+/H+ exchangers (NHEs), suggesting that members of the NHE‐family regulate this process. Once internalized, ICAM‐1 is co‐localized with MHC class II in the polarized recycling compartment. Surprisingly, not only ICAM‐1, but also MHC class II, is targeted to the immunological synapse through LFA‐1‐dependent adhesion. Cytosolic ICAM‐1 is highly mobile and forms a tubular structure. Inhibitors of microtubule or actin polymerization can reduce ICAM‐1 mobility, and thereby block accumulation at immunological synapses. Membrane ICAM‐1 also moves to the T‐cell contact zone, presumably through an active, cytoskeleton‐dependent mechanism. Collectively, these results demonstrate that ICAM‐1 can be transported to the immunological synapse through the recycling compartment. Furthermore, the high‐affinity state of LFA‐1 on T cells is critical to induce targeted movements of both ICAM‐1 and MHC class II to the immunological synapse on APCs. J. Cell. Biochem. 111: 1125–1137, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
At the developing neuromuscular junction the Agrin receptor MuSK is the central organizer of subsynaptic differentiation induced by Agrin from the nerve. The expression of musk itself is also regulated by the nerve, but the mechanisms involved are not known. Here, we analyzed the activation of a musk promoter reporter construct in muscle fibers in vivo and in cultured myotubes, using transfection of multiple combinations of expression vectors for potential signaling components. We show that neuronal Agrin by activating MuSK regulates the expression of musk via two pathways: the Agrin-induced assembly of muscle-derived neuregulin (NRG)-1/ErbB, the pathway thought to regulate acetylcholine receptor (AChR) expression at the synapse, and via a direct shunt involving Agrin-induced activation of Rac. Both pathways converge onto the same regulatory element in the musk promoter that is also thought to confer synapse-specific expression to AChR subunit genes. In this way, a positive feedback signaling loop is established that maintains musk expression at the synapse when impulse transmission becomes functional. The same pathways are used to regulate synaptic expression of AChR epsilon. We propose that the novel pathway stabilizes the synapse early in development, whereas the NRG/ErbB pathway supports maintenance of the mature synapse.  相似文献   

17.
Agrin released from motor nerve terminals activates a muscle-specific receptor tyrosine kinase (MuSK) in muscle cells to trigger formation of the skeletal neuromuscular junction. A key step in synaptogenesis is the aggregation of acetylcholine receptors (AChRs) in the postsynaptic membrane, a process that requires the AChR-associated protein, rapsyn. Here, we mapped domains on MuSK necessary for its interactions with agrin and rapsyn. Myotubes from MuSK(-/)- mutant mice form no AChR clusters in response to agrin, but agrin-responsiveness is restored by the introduction of rat MuSK or a Torpedo orthologue. Thus, MuSK(-/)- myotubes provide an assay system for the structure-function analysis of MuSK. Using this system, we found that sequences in or near the first of four extracellular immunoglobulin-like domains in MuSK are required for agrin responsiveness, whereas sequences in or near the fourth immunoglobulin-like domain are required for interaction with rapsyn. Analysis of the cytoplasmic domain revealed that a recognition site for the phosphotyrosine binding domain-containing proteins is essential for MuSK activity, whereas consensus binding sites for the PSD-95/Dlg/ZO-1-like domain-containing proteins and phosphatidylinositol-3-kinase are dispensable. Together, our results indicate that the ectodomain of MuSK mediates both agrin- dependent activation of a complex signal transduction pathway and agrin-independent association of the kinase with other postsynaptic components. These interactions allow MuSK not only to induce a multimolecular AChR-containing complex, but also to localize that complex to a primary scaffold in the postsynaptic membrane.  相似文献   

18.
19.
20.
The objective of the present investigation was to determine the effects of muscle unloading—a form of subtotal disuse— on the morphology of the neuromuscular junction (NMJ) in younger and aged animals. Sixteen aged (22 months) and 16 young adult (8 months) male Fischer 344 rats were assigned to control and hindlimb suspension (HS) conditions (n = 8/group). At the conclusion of the 4 week experimental period, soleus muscles were collected, and immunofluorescent procedures were used to visualize acetylcholine (ACh) vesicles and receptors, nerve terminal branching, as well as NCAM and NT‐4 expression. Quantitative analyses revealed that aged controls displayed significant (p < 0.05) reductions in area and perimeter length of ACh vesicle and receptor regions, without affecting nerve terminal branch number or length. In contrast to younger NMJs, which were resilient to the effects of unloading, NMJs of aged HS rats demonstrated significant expansion of ACh vesicle and receptor dimensions compared to aged controls. Qualitative analyses of NCAM staining indicated that aging alone somewhat increased this molecule's expression (aged controls > young controls). Among the four groups, however, the greatest amount of NCAM content was detected among aged HS muscles, matching the degree of synaptic plasticity exhibited in those muscles. Unlike NCAM, the expression of NT‐4 did not appear to differ among the treatment groups. These data suggest that although young adult muscle maintains normal NMJ structure during prolonged exposure to unloading, aged NMJs experience significant adaptation to that stimulus. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 246–256, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号