首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Green walls (GWs) have been increasingly recognized as an important restoration technique for steep slopes resulting from quarrying activities or major infrastructure construction projects. In practice, GW irrigation is considered essential, although studies evaluating vegetation establishment under different irrigation regimes are lacking. Besides taxonomic metrics, functional diversity measures were used to compare the diversity and composition of plant communities of two hydroseeded GWs, with different irrigation regimes (irrigated vs. low‐irrigated). The studied GWs were installed in Peneda‐Gerês National Park (NW Portugal) to minimize the visual impact of shotcrete walls, along a road infrastructure, and promote their ecological restoration. Species' cover was recorded 3 years after installation. Species were classified according to their growth form, life form, and life strategy. Despite hydroseeding approximately 57 species, GW vegetation was dominated by spontaneous species, particularly acrocarpous mosses, regardless of irrigation regime. Species and functional richness were higher under irrigated conditions, while no differences were observed for species diversity and functional dispersion. Functional trait composition did not differ between GWs, indicating that both systems potentially provide the same ecosystem functions and services. Our results also suggest that spontaneous species colonizing GWs are highly adapted to local environmental conditions, given their dominance in both irrigated and low‐irrigated communities. Overall, irrigation did not affect the structure and functioning of GW communities, only their redundancy, since more species exhibiting similar traits were established in the irrigated GW. Therefore, our findings suggest that low‐irrigated GWs, hydroseeded with native species, represent a more cost‐effective solution to reduce the ecological impacts of steep slopes.  相似文献   

2.
Predicting the recovery processes in tree communities after logging is critical when developing conservation strategies. We assessed the patterns in tree communities in logged and primary forests in Kibale National Park, Uganda, representing 9‐ to 19‐year‐old clear‐cuts of former conifer plantations, 42‐ to 43‐year‐old logged forests and primary forests. Species density and diversity were lower and dominance higher in the 9‐ to 19‐year‐old forests compared to the 42‐ to 43‐year‐old forests or primary forests. The tree species density, diversity and dominance of 42‐ to 43‐year‐old forests did not differ significantly from primary forests. However, they had a lower stem density, and higher cover of Acanthus pubescens, a shrub known to arrest the succession in Kibale. The tree community compositions of 9‐ to 19‐year‐old, 42‐ to 43‐year‐old and primary forests differed from each other. A large group of tree species (21) were primary forest indicators, that is, they were either missing or relatively rare in logged forests. The results of this study show that even after four decades of natural recovery, logged Afrotropical forests can still be distinguished from primary forests in their tree community compositions, emphasizing the slow community recovery and the important role of primary forests when preserving the tree communities in tropical rainforests.  相似文献   

3.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

4.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

5.
Large areas of the bushveld bioregion are converted from natural rangeland to cultivated fields for economic purposes. Conversion of grasslands to agricultural land alters the vegetation structure, plant species composition and ecological functioning. The aim of this paper was to evaluate the effectiveness of different seeding densities to enhance the restoration of old cultivated fields in Marakele National Park. Before these areas along the Motlhabatsi River were incorporated into the Park they were used for cultivation of crops. In an attempt to restore these areas to an improved condition, this pilot study was undertaken to determine best practice. One study area comprising two experimental sites and one control site were selected. A seed mixture consisting of natural grass species to the area was selected and sown at two different seed densities. The sites were monitored for a 2‐year period for species diversity and composition. Data were analysed using the analysis of variance (ANOVA), while species diversity was calculated for the different experimental sites using the Shannon–Wiener index. Limited differences were observed between the two seeding densities. The results indicate that seeding degraded grasslands in these bushveld areas enhance the diversity and evenness of the degraded land.  相似文献   

6.
Avian community composition of kopjes in a heterogeneous landscape   总被引:1,自引:0,他引:1  
Trager M  Mistry S 《Oecologia》2003,135(3):458-468
We examined avian communities of kopjes (naturally occurring insular rock outcrops) in grassland and thorn tree woodland habitats in the Seronera region of Serengeti National Park, northwestern Tanzania. Although kopjes cover a small proportion of the Park's area, they provide resources that are uncommon in the Serengeti landscape and are known to host diverse, yet poorly documented, biotic communities. The primary objectives of this study were (1) to compare avian communities of kopjes with those of their surrounding habitat matrixes; (2) to compare the avian communities among kopjes; and (3) to determine the effects of kopje characteristics (e.g., size, vegetation cover, level of human disturbance and matrix type) on avian diversity and community composition. The avian communities of kopjes differed significantly from those of the matrixes in species composition and guild characteristics. Rare species, frugivorous species and nectarivorous species were more abundant on kopjes, whereas there were more ground-feeding species in matrix sites. Species richness was positively correlated with the area of kopjes covered by tall vegetation (5+ m), but neither total habitat area nor total vegetation cover significantly affected avian diversity. The surrounding habitat type, the fruiting phenology of Ficus and Commiphora trees and the level of human disturbance also influenced the presence and abundance of individual species and accounted for differences in community composition among kopjes. Our results show that kopjes support unique avian assemblages comprising many species that are otherwise rare in Serengeti, and consequently that kopjes may be local hotspots of avian diversity in the region.  相似文献   

7.
Many paddy fields in the mountainous rural areas of Japan have been abandoned since the 1960s, and forests have regenerated on these sites. In a mountainous area on Sado Island, a large number of abandoned paddies were converted into wetlands and open terrestrial vegetation. In this study, we used pitfall traps to examine the effects of the creation of open vegetation on carabid beetle assemblages by investigating 14 sites spanning five vegetation types: six sites in secondary forests (three coppice forests and three 40‐year‐old regenerating forests on abandoned paddies), three each in clear‐cuts and paddy levees, and two in grasslands. The 14 study sites were clearly separated into two groups different in the species composition of carabid beetles: secondary forest and grassland‐levee groups. The species composition of two clear‐cut sites was similar to that of secondary forests, whereas that of the remaining one clear‐cut site was similar to that of grasslands. Analyses of species responses showed various habitat preferences, e.g., for only coppice forests, for two types of secondary forests, for secondary forests and clear‐cuts, for clear‐cuts and grasslands, and for grasslands or levees, or no clear preference. There were no characteristic species in the regenerating forests. These results suggest that the 40‐year‐old regenerating forests may sustain only a limited subset of the carabid fauna found in coppice forests and that the creation of open vegetation in the abandoned paddies enhances carabid diversity at the landscape level by raising β diversity among the different vegetation types.  相似文献   

8.
Inselbergs are isolated monolithic outcrops which are characterized by large areas of exposed crystalline rock. Due to harsh edaphic and microclimatic conditions, inselbergs are completely differentiated from their surroundings. Consequently they host a very distinct vegetation which is being investigated on a global scale over a six year period. The seasonal dynamics of Selected plant communities (Afrotrilepis pilosa mat, shallow depression, ephemeral flush vegetation) on granitic inselbergs in the Comoe National Park (NE Ivory Coast) were studied during the rainy period from May to November 1991 by recording all vascular plant species at 12 intervals. For the habitats investigated, the seasonal vegetation dynamics were related to the rainfall pattern. Maximum values both in species diversity and richness were attained in the first third of the rainy period. Drought in August and September caused a decline in species number and diversity in the shallow depression and ephemeral flush vegetation, resulting in mortality of more than 20% of the species. The individual communities studied differed considerably in species diversity and richness. We conclude that ephemeral flush and shallow depression communities are more species rich than the mat community which is dominated by the highly competitive and specialized K-strategist Afrotrilepis pilosa (a poikilohydric Cyperaceae) due to stochastic climatic perturbations which allow the maintenance of species rich non-equilibrium assemblages with r-strategists as major components.  相似文献   

9.
10.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

11.
Environmental gradients have been shown to affect animal diversity, but knowledge of fine‐scale drivers of insect diversity is, in many cases, poorly developed. We investigated the drivers of beetle diversity and composition at different microhabitats, and how this may be mediated by past agricultural activities. The study was undertaken in temperate eucalypt grassy woodland near Canberra, south‐eastern Australia, with a 200‐year history of pastoral land use. We sampled beetles using pitfall traps at three microhabitats (open grassland, logs and under trees). We analysed the effects of soil properties, vegetation structure, and plant composition on beetle composition, and compared beetle responses among the microhabitats. We found that microhabitat was a strong determinant of the way beetle communities responded to their environment. Soil nutrients (C, N and P) were the strongest drivers of beetle species richness, abundance and composition at open and log microhabitat, however vegetation structure (tree basal area) was more important for beetle richness, abundance and biomass under trees. We also found significant differences in beetle composition among distinct ground‐layer plant communities at log and tree microhabitat. We show that prior agricultural land use, particularly fertilization, has altered soil and plant communities, and that these effects continue to flow through the system affecting beetle assemblages. These findings have implications for future management of microhabitat structures in temperate grassy woodlands with a history of agricultural use.  相似文献   

12.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

13.
Scale‐dependency of pattern and process is well‐understood for many ecological communities; however, the influence of spatial scale (sampling grain) in detecting temporal change in communities is less well‐understood. The temperate lowland heathlands of south‐east Australia are one of the most fire‐prone ecosystems on earth. Despite the extensive literature documenting the effect of time since fire on heathlands, we know little about how sampling grain influences trends in vegetation variables over time, and whether these trends are scale‐dependent. Using 3500 ha of heathland in the Gippsland Lakes Coastal Park, south‐east Australia, we investigated how above‐ground species composition and diversity, and trends in these variables with increasing time since fire, were influenced by sampling grain (1 m2, 10 m2, 100 m2, 900 m2, 1 ha, 4 ha). Sampling grain influenced patterns detected in vegetation variables and in some instances, significantly affected their relationship with time since fire. Richness decreased with time since fire, with mean richness decreasing at three of the four grains, while total richness decreased at half of the sampled grains. Evenness (J) decreased with increasing time since fire for all grains except 1 m2. The decline in diversity (H) with time since fire appeared to be independent of scale, as all grains decreased significantly with increasing time since fire. Community heterogeneity demonstrated a weak response to time since fire across most grains. Changes in composition among young (0–6 years since fire), intermediate (9–19 years) and old (23–27 years) sites were dependent on sampling grain, with all grains exhibiting significant differences in composition, apart from the 1 m2 grain and the 100 m2 grain (presence/absence data). Overall, species composition, richness, evenness, diversity and community heterogeneity were dependent on the scale at which the vegetation was sampled. In addition, trends in many of these vegetation variables with increasing time since fire were scale‐dependent. This work provides strong evidence that sampling at multiple grains contributes substantially to understanding pattern and process in heathlands.  相似文献   

14.
Forest management practices have the potential to impact upon native vegetation. Most studies focus on the effects of management on the above‐ground vegetation communities, with little attention given to the soil stored seed bank. Here we examine the soil stored seed bank of a long‐term experimental site in south‐eastern Australia, which has experienced timber harvesting and repeated prescribed burning over a 20‐year period. At each of 213 long‐term vegetation measurement plots, 3.5 kg of soil was collected and germinated in a glasshouse over a period of 2 years. Comparisons were made between the experimental treatments considering differences in species richness, abundance and community composition of the understorey seed bank. Logged sites had a higher diversity and abundance of seedlings compared with unlogged sites, which is consistent with observed changes in standing vegetation within 10 years following logging. Prescribed burning resulted in a lower diversity and abundance of seedlings, which contrasts with the increase in species diversity observed in response to frequent fire in standing vegetation. Individual taxa that declined in the seed bank in response to frequent fire were all taxa for which germination is enhanced by exposure to smoke. Contrary to expectations, these did not exhibit a corresponding decline as standing plants. While management actions above ground are having minor impacts, greater effects were seen in the soil stored seed bank.  相似文献   

15.
Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.  相似文献   

16.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.  相似文献   

17.
The status of woody seedling colonization gives clues about the self‐sustainability of restored forests, a tenet of restoration success. Little is known about woody seedling colonization in restored afrotropical forests. We evaluated effects of restoration methods (active vs. passive), sampling year, restoration age, and distance from old‐growth forests on seedling colonization in restored afrotropical moist forests. Seedlings were measured in 2011 and 2014 in 71 clusters of 284 permanent sampling plots (12.6 m2 each) in actively (initially 3–16 years old) and 21 clusters of 63 plots in passively restored forests (initially 16 years old) in Kibale National Park, western Uganda. Seedlings were also measured in nearby old‐growth forests in three clusters of five plots in 2014. We determined species diversity, richness, abundance per plot, and species composition as measures of seedling colonization in restored and old‐growth forests. We found that diversity, richness, and abundance of seedlings were significantly higher in passively than actively restored forests. Diversity and richness but not abundance significantly increased between sampling years and with restoration age. Distance from old‐growth forests did not significantly affect diversity, richness, and abundance. Species composition of actively and passively restored forests was different from that of old‐growth forests after 19 years since restoration started. Our results show that passive restoration should be the preferred method for recovering afrotropical forests, and highlight the effect of continued management on biodiversity of restored forests.  相似文献   

18.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

19.
Understanding the effects of anthropogenic disturbances on biodiversity is important for conservation prioritization. This study examined the effects of vegetation degradation on bird diversity in Abiata‐Shalla Lakes National Park, Ethiopia. We surveyed birds and vegetation structure between January and March 2015 in disturbed (impacted by settlement and agriculture) and undisturbed (not impacted) transects of two vegetation types (savannah woodland and gallery forest). We compared between disturbed and undisturbed transects at local (within vegetation types) and landscape (across vegetation types) levels: (a) avian species richness of the entire assemblage and feeding guilds and (b) species assemblage composition. We found significantly greater mean and total bird species richness of the entire assemblage and insectivore and granivore feeding guilds in the undisturbed transects, while the nectarivore guild was totally absent in the disturbed transects. We also found significant differences in bird species assemblage composition between the disturbed and undisturbed transects both within and across the vegetation types, and bird species assemblage composition at the landscape level was positively correlated with tree abundance and understorey vegetation height. In conclusion, our results demonstrate and add to the increasing body of evidence concerning the adverse effects of human‐induced vegetation change on bird diversity.  相似文献   

20.
Question: Does the vegetation of restored salt marshes increasingly resemble natural reference communities over time? Location: The Essex estuaries, southeast England. Methods: Abandoned reclamations, where coastal defences had been breached in storm events, and current salt marsh recreation schemes were surveyed giving a chronosequence of salt marsh regeneration from 2 to 107 years. The presence, abundance and height of plant species were recorded and comparisons were made with adjacent reference salt marsh communities at equivalent elevations. Results: Of the 18 paired sites surveyed, 13 regenerated marshes had fewer species than their adjacent reference marsh, three had an equal number and two had more. The plant communities of only two de‐embankment sites matched that of the reference community. 0–50 year old sites and 51–100 year old sites had fewer species per quadrat than the 101+ year sites and the reference salt marshes. There was a weak relationship between differences in species richness for regenerated and reference marshes and the time since sites were first re‐exposed to tidal inundation. Cover values for the invasive and recently evolved Spartina anglica were greater within regenerated than reference marshes. Conclusions: Salt marsh plants will colonise formerly reclaimed land relatively quickly on resumption of tidal flooding. However, even after 100 years regenerated salt marshes differ in species richness, composition and structure from reference communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号