首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

2.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

3.
Moll BA  Jones RL 《Plant physiology》1982,70(4):1149-1155
The secretion of α-amylase from single isolated (Hordeum vulgare L. cv Himalaya) aleurone layers was studied in an automated flow-through apparatus. The apparatus, consisting of a modified sample analyzer linked to a chart recorder, automatically samples the flow-through medium at 1 minute intervals and assays for the presence of α-amylase. The release of α-amylase from aleurone layers begins after 5 to 6 hours of exposure to gibberellic acid and reaches a maximum rate after 10 to 12 hours. The release of α-amylase shows a marked dependence on Ca2+, and in the absence of Ca2+ it is only 20% of that in the presence of 10 millimolar Ca2+. Withdrawal of Ca2+ from the flow-through medium results in the immediate cessation of enzyme release and addition of Ca2+ causes immediate resumption of the release process. The effect of Ca2+ is concentration-dependent, being half-maximal at 1 millimolar Ca2+ and saturated at 10 millimolar Ca2+. Ruthenium red, which blocks Ca2+ but not Mg2+ efflux from barley aleurone layers, renders α-amylase release insensitive to Ca2+ withdrawal. Inhibitors of respiratory metabolism cause a burst of α-amylase release which lasts for 0.5 to 5 hours. Following this phase of enhanced α-amylase release, the rate of release declines to zero. Pretreatment of aleurone layers with HCl prior to incubation in HCN also causes a burst of α-amylase release, indicating that the inhibitor is affecting the secretion of α-amylase and not its movement through the cell wall. The rapid inhibition of α-amylase release upon incubation of aleurone layers at low temperature (5°C) or in 0.5 molar mannitol also indicates that enzyme release is dependent on a metabolically linked process and is not diffusion-limited. This conclusion is supported by cytochemical observations which show that, although the cell wall matrix of aleurone layers undergoes extensive digestion after gibberellin treatment, the innermost part of the cell wall is not degraded and could influence enzyme release.  相似文献   

4.
After 4 days in an atmosphere of N2, aleurone layers of barley (Hordeum vulgare L. cv Himalaya) remained viable as judged by their ability to produce near normal amounts of α-amylases when incubated with gibberellic acid (GA3) in air. However, layers did not produce α-amylase when GA3 was supplied under N2, apparently because α-amylase mRNA failed to accumulate.  相似文献   

5.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

6.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

7.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

8.
An immunological assay has been used to investigate the synthesis of (1→3,1→4)-β-glucanase (EC 3.2.1.73) isoenzymes from isolated barley aleurone layers and scutella. Enzyme release from both tissues is enhanced by 1 micromolar gibberellic acid and 10 millimolar Ca2+, although increases induced by gibberellic acid are observed only in the presence of Ca2+. Isoenzyme I is synthesized predominantly in the scutellum, while isoenzyme II is synthesized exclusively in the aleurone. A third, putative isoenzyme III has been detected in significant proportions in scutellar secretions and may also be secreted from aleurone layers. Both gibberellic acid and Ca2+ appear to preferentially enhance isoenzyme II secretion from the aleurone and isoenzyme III secretion from scutella. The patterns of isoenzyme secretion are suggestive of tissue-specific differences in expression of the genes which code for (1→3,1→4)-β-glucanase isoenzymes. Qualitatively similar results were obtained with barley cultivars harvested in Australia and North America.  相似文献   

9.
Posttranslational modifications that give rise to multiple forms of α-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley α-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). α-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and α-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic α-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley α-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify α-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of α-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase.  相似文献   

10.
To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels.  相似文献   

11.
α-Amylase has been purified from de-embryonated seeds of barley (Hordeum vulgare L. cv. Betzes) which have been incubated on 10−6 m gibberellic acid (GA3) following 3 days of imbibition in buffer. Incubation of the half-seeds in up to 10−2 m 5-fluorouracil (5-FU) during the entire incubation period, including imbibition, had no effect on any of the following characteristics of purified α-amylase: thermal stability in the absence of calcium, molecular weight of the enzyme, isozyme composition, specific activity, or the amount of α-amylase synthesized by the aleurone tissue. The synthesis of rRNA and tRNA was strongly inhibited by 5-FU, indicating that the analog had entered the aleurone cells. These results are not in agreement with those of Carlson (Nature New Biology 237: 39-41 [1972]) who found that treatment of barley aleurone with 10−4 m 5-FU prior to the addition of GA3 resulted in decreased thermal stability of GA3-induced α-amylase and who interpreted this as evidence that the mRNA for α-amylase was synthesized during the imbibition of the aleurone tissue and independently of gibberellin action. Results of the present experiments indicate that the thermal stability of highly purified α-amylase is not altered by treatment of barley half-seeds with 5-FU, and that 5-FU cannot be used as a probe to examine the timing of α-amylase mRNA synthesis.  相似文献   

12.
The gibberellic acid (GA3)-induced α-amylases from the aleurone layers of Himalaya barley (Hordeum vulgare L. cv Himalaya) have been purified by cycloheptaamylose-Sepharose affinity chromatography and fractionated by DEAE-cellulose chromatography. Four fractions (α-amylases 1-4) were obtained which fell into two groups (A and B) on the basis of a number of characteristics. Major differences in serological characteristics and in proteolytic fingerprints were found between group A (α-amylases 1 and 2) and group B (α-amylases 3 and 4). Also, the lag time for appearance of group B enzyme activity was longer than for group A, and the appearance of group B required higher GA3 levels than group A. The components of each group behaved similarly, although differences in proteolytic fingerprints were detected.

These results together with those from other studies indicate that GA3 differentially controls the expression of two α-amylase genes or groups of genes giving rise to two groups of α-amylases with many different properties.

  相似文献   

13.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

14.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

15.
The addition of gibberellic acid to isolated aleurone layers of barley (Hordeum vulgare L.) causes the production and secretion of four α-amylases. Two of these are stable at pH 3.7 and are not inactivated by ethylenediaminetetraacetate. The other two represent the classical barley α-amylases; i.e., they are inactivated at pH 3.7 and by reagents which from complexes with divalent metal ions. All four forms are synthesized de novo in response to the addition of gibberellic acid.  相似文献   

16.
Sun Z  Henson CA 《Plant physiology》1990,94(1):320-327
The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro.  相似文献   

17.
18.
Jones RL 《Plant physiology》1969,44(1):101-104
Both polyethylene glycol (PEG) and mannitol inhibit gibberellic acid-induced α-amylase production in barley aleurone layers. The effect of the osmotic solution is on enzyme synthesis rather than α-amylase secretion. The inhibition of α-amylase synthesis does not appear to be mediated via an indirect effect on respiration or protein synthesis. Rather it seems that the osmotic solutions reduce the extent of proteolysis of the stored aleurone grain protein thus making available less substrate for new protein synthesis.  相似文献   

19.
The addition of abscisic acid to barley (Hordeum vulgare L. cv. Himalaya) aleurone layers at the same time as gibberellic acid completely prevents the gibberellin-induced increases in the percentage of polysomes, the formation of polyribosomes, and the synthesis of α-amylase, even when the molar concentration of gibberellic acid is four times greater than the concentration of abscisic acid. The addition of abscisic acid to aleurone cells producing α-amylase (midcourse addition) inhibits the further synthesis of α-amylase and decreases the percentage of polysomes but does not change the number of ribosomes per cell.  相似文献   

20.
The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes.

In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts.

Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号