首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

2.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

3.
4.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

5.
6.
7.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

8.
α-Amylase activities in extracts of different parts of barley grain (Hordeum vulgare L. cv Himalaya) were low after 1 day of germination at 20°C, but they began to increase afterwards. In the scutellum and the aleurone layer, the increases were small, but in the starchy endosperm a great increase took place between days 1 and 6.

When the aleurone layers were separated from germinating whole grains and incubated in 10 millimolar CaCl2, the α-amylase activity in the medium increased linearly for about 30 to 60 minutes, indicating secretion. The activity inside the aleurone layer decreased only slightly during the incubation, indicating that secretion of α-amylase was accompanied by synthesis. The rates of secretion in vitro by the aleurone layers separated at different stages of germination corresponded rather well to the rate of accumulation of α-amylase activity in the starchy endosperm in a whole grain.

Scutella separated after 1 day of germination released small amounts of α-amylase activity into 10 millimolar CaCl2. This release was linear for at least 1 hour and did not occur at 0°C; it is therefore likely to be due to secretion. At later stages of germination, the secretion by the scutella was slower than at day 1 and the total secretion accounted for only 5 to 10% of the increase of α-amylase activity in the starchy endosperm in a whole grain.

Since the times from the separation of the parts of the grain to the beginning of the secretion assay (10-40 minutes) as well as the duration of the assay itself (20-60 minutes) were short, the rates of secretion by the separated grain parts are likely to represent those in an intact grain. The results indicate therefore that at least in the conditions used the bulk of the total α-amylase in the starchy endosperm is secreted by the aleurone layer, the contribution by the scutellum being only 5 to 10% of the total activity.

  相似文献   

9.
Gibberellin-treated barley (Hordeum vulgare L.) aleurone cell protoplasts have been shown previously to contain two α-amylase isozymes which are not secreted (JV Jacobsen, JA Zwar, PM Chandler 1985 Planta 13: 430-438). This report shows that these intracellular forms are immunochemically related to the low isoelectric point but not the high isoelectric point group of α-amylase isozymes and that they arise by new synthesis like the secreted forms. Pulse-chase studies show that the intracellular isozymes are precursors to the secreted isozymes. Conversion of the intra- to the extracellular forms involves decreases in isoelectric points with no change in size detectable by SDS-PAGE. The precursor isozymes were also detected in aleurone layer homogenates but they were unstable. They could be stabilized by various treatments including heating the homogenate to 70°C for 10 minutes indicating that the instability was enzymically mediated. Using purified radioactive precursor isozymes, it was shown that instability did not involve inactivation but the conversion to secreted forms. The nature of the covalent modification associated with conversion was not determined but available data indicate that it does not involve glycosylation.  相似文献   

10.
RNA metabolism of embryo and aleurone of barley grains (Hordeum vulgare L. cv. Himalaya) was studied to elucidate the role of these tissues in the control of alpha-amylase synthesis and germination. The extent of (3)H-uridine incorporated into various RNA classes of the embryo during the first 12 hours of germination was low but constant. Subsequently, there was a rapid increase in RNA synthesis of all fractions. In the aleurones, after 16 hours, a gradual decrease in (3)H-uridine incorporation was observed, and by the time the synthesis of RNA in the aleurones had stopped, alpha-amylase level was at its highest in the grain.On transfer to accelerated aging conditions (43 C; 85% relative humidity), the grains lost their viability within 4 weeks. That this was due to a rapid deterioration of the embryo and not of the aleurone was apparent in studies on alpha-amylase formation, RNA metabolism, and ATP content in grains in various physiological states reported here. Results presented here also reveal a marked influence of the embryo and GA(3) on the quality of the newly synthesized RNAs. Aleurones which lacked the impulse of embryo or GA(3) were capable of synthesizing RNA but these RNAs were less heterodisperse than RNAs from aleurones which were under the influence of an embryo or GA(3).  相似文献   

11.
alpha-Amylases (EC 3.2.1.1) secreted by the aleurone layer of barley grains are Ca2+-containing metalloenzymes. We studied the effect of Ca2+ on the activity and structure of the two major groups of aleurone alpha-amylase by incubating affinity purified enzyme in solutions containing Ca2+ from pCa 4 to 7. Both groups of isoforms required one atom of Ca2+/molecule of enzyme as determined by isotope exchange, but the two groups differed by more than 10-fold in their affinity for Ca2+. Both groups of alpha-amylase were irreversibly inactivated by incubation in low Ca2+ (pCa 7). This inactivation was not due to changes in primary structure, as measured by molecular weight, but appeared to be the result of changes in secondary and tertiary structure as indicated by circular dichroism spectra, serology, lability in the presence of protease, and fluorescence spectra. Analysis of the predicted secondary structure of barley aleurone alpha-amylase indicates that the Ca2+-binding region of barley amylases is structurally similar to that of mammalian alpha-amylases. Our data indicate that micromolar levels of Ca2+ are required to stabilize the structure of barley alpha-amylases in the endoplasmic reticulum of the aleurone layer where these enzymes are synthesized.  相似文献   

12.
Antisense oligodeoxynucleotides (ODNs) have been applied to regulate gene expression using cell-free media or animal cells. Here we demonstrate the specific inhibition of barley alpha-amylase gene expression by synthetic antisense ODNs. In a cell free system using wheat-germ extracts, 5 microM of a 20-mer antisense ODN prevented the synthesis of the polypeptide corresponding to the predetermined length of alpha-amylase translated in vitro, whereas there was no effect on other protein synthesis. Furthermore, in cultured aleurone cells, alpha-amylase activity was efficiently decreased by addition of ODNs. At the concentrations higher than 5 microM, antisense ODN inhibited alpha-amylase gene expression almost completely. These results imply that ODN could transport into the cultured aleurone cells crossing the cell membrane, and regulate specific gene expression. This simple model system could be applicable not only for the analysis of the alpha-amylase multigene family in barley but also for studying functions of cryptic genes in higher plant.  相似文献   

13.
Jones RL 《Plant physiology》1969,44(10):1428-1438
Ultracentrifugation of barley aleurone cells results in the stratification of organelles thus allowing for a quantitation of those organelles. Gibberellic acid (GA(3))-stimulated alpha-amylase production in stratified cells is reduced by centrifugation at gravitational forces greater than 40,000g. Forces below 30,000g do not affect GA(3)-stimulated alpha-amylase production although stratification of organelles occurs at these forces. The ability of centrifuged cells to respond maximally to GA(3) by producing alpha-amylase is related to the degree of redistribution of organelles within these cells. Thus, recovery of cells from centrifugation at forces below 30,000g is rapid, while recovery from forces above 40,000g is slow.  相似文献   

14.
15.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   

16.
Summary Treatment of isolated barley aleurone layers with gibberellic acid (GA3) resulted in a progressive inhibition of cell-wall synthesis after a 4-h lag period. The incorporation of both [14C]arabinose and [14C]glucose into the cell wall was inhibited by GA3, but analysis of the labelled sugars in the polymerized product showed that the process most affected by the hormone treatment was pentosan biosynthesis. Labelling kinetics and pulse-chase analysis indicated that the pentosans were synthesized in the cytoplasm and subsequently transferred to the cell wall; GA3 did not significantly affect the latter step. The GA3-inhibited labelling of the cell-wall pentosans cannot be explained on the basis of an effect on uptake of radioactive cell-wall precursor, expansion of the free pentose pool, or degradation of newly-formed pentosan. GA3 inhibited the activity of a membrane-bound arabinosyl transferase present in the aleurone layers. This inhibition may explain the inhibition of cell-wall pentosan synthesis by GA3.Abbreviations GA gibberellin - GA3 gibberellic acid  相似文献   

17.
We have determined the nucleotide sequences of Amy32b, a type A alpha-amylase gene, and of the gene for aleurain, a thiol protease closely related to mammalian cathepsin H. Both are expressed in barley aleurone cells under control of the plant hormones gibberellic acid and abscisic acid, but only aleurain is expressed at high levels in other barley tissues. Sequence analysis indicates that the 5' end of the aleurain gene, comprising 3 exons and 2 introns, may have become associated with the remainder of the gene, encoding the protease domain of the protein, by some sort of recombination event. This 5' domain of the gene is very G + C-rich and is flanked by inverted repetitive sequences. We found two different groups of homologous sequence elements. The first group consists of four blocks of sequences conserved in the same spatial arrangement in both genes; these are arranged at similar intervals upstream from the Amy32b TATA box and from a TATA box present in intron 3 of aleurain, outside of the 5' domain and upstream from the protease domain. A part of two of these conserved sequences is similar to the core sequence of certain enhancer elements characterized from mammalian cells. The second group of homologous elements is present in the upstream region of both genes. We speculate that these conserved sets of sequences may have some role in either the tissue specificity of expression of the genes or in some part of the hormonal regulation imposed on them.  相似文献   

18.
The intracellular localization of an endonuclease (nuclease I) in barley aleurone responding to gibberellic acid was investigated by subcellular fractionation and immunocytochemistry with monoclonal and polyclonal antibodies. Organelle separations were performed with aleurone layers and protoplasts; immunefixations were carried out on protoplasts only. Nuclease was detected in fractions from isopycnic sucrose density gradients which were enriched in either endoplasmic reticulum or Golgi apparatus membranes. These two organelles were also labelled by the indirect immunogold method on thin sections. Intensive labelling of protein and developing vacuoles was observed. Therefore, as noted in other plants nuclease in barley is essentially a vacuolar enzyme.  相似文献   

19.
The expression of the Adh1 gene (alcohol dehydrogenase, EC 1.1.1.1) was studied in the aleurone layer of barley ( Hordeum vulgare cv. Himalaya). Expression increased markedly during grain development at the levels of activity, enzyme protein and mRNA. mRNA content, but not enzyme activity, could be increased further by exogenous abscisic acid (ABA) when isolated, de-embryonated developing grains were pre-treated with gibberellic acid (GA3) or fluridone. In isolated mature aleurone layers incubated with exogenous hormones, ADH mRNA was strongly up-regulated by ABA and down-regulated by GA3 within 6 h. With ABA, this increase in mRNA was followed by an increase in ADH protein and activity, peaking at 18 h. With GA3, the decrease in mRNA was accompanied by simultaneous decreases in protein and activity. In general, GA3 counteracted the effect of ABA and vice versa. In the aleurone of germinating grain, ADH activity decayed in a distal direction from the embryo, consistent with down-regulation by gibberellin(s) diffusing from it. It was concluded that ADH gene expression in the aleurone of the intact grain is regulated by an ABA/gibberellin interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号