首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin-binding protein 4a (PBP4a) from Bacillus subtilis was overproduced and purified to homogeneity. It clearly exhibits DD-carboxypeptidase and thiolesterase activities in vitro. Although highly isologous to the Actinomadura sp. strain R39 DD-peptidase (B. Granier, C. Duez, S. Lepage, S. Englebert, J. Dusart, O. Dideberg, J. van Beeumen, J. M. Frère, and J. M. Ghuysen, Biochem. J. 282:781-788, 1992), which is rapidly inactivated by many beta-lactams, PBP4a is only moderately sensitive to these compounds. The second-order rate constant (k(2)/K) for the acylation of the essential serine by benzylpenicillin is 300,000 M(-1) s(-1) for the Actinomadura sp. strain R39 peptidase, 1,400 M(-1) s(-1) for B. subtilis PBP4a, and 7,000 M(-1) s(-1) for Escherichia coli PBP4, the third member of this class of PBPs. Cephaloridine, however, efficiently inactivates PBP4a (k(2)/K = 46,000 M(-1) s(-1)). PBP4a is also much more thermostable than the R39 enzyme.  相似文献   

2.
We have characterized the role of the penicillin-binding protein PBP 2B in cell division of Bacillus subtilis. We have shown that depletion of the protein results in an arrest in division, but that this arrest is slow, probably because the protein is relatively stable. PBP 2B-depleted filaments contained, at about their mid-points, structures resembling partially formed septa, into which most, if not all, of the division proteins had assembled. Although clearly deficient in wall material, membrane invagination seemed to continue, indicating that membrane and wall ingrowth can be uncoupled. At other potential division sites along the filaments, no visible ingrowths were observed, although FtsZ rings assembled at regular intervals. Thus, PBP 2B is apparently required for both the initiation of division and continued septal ingrowth. Immunofluorescence microscopy showed that the protein is recruited to the division site. The pattern of localization suggested that this recruitment occurs continually during septal ingrowth. During sporulation, PBP 2B was present transiently in the asymmetrical septum of sporulating cells, and its availability may play a role in the regulation of sporulation septation.  相似文献   

3.
4.
Penicillin-binding proteins (PBPs) catalyze the final, essential reactions of peptidoglycan synthesis. Three classes of PBPs catalyze either trans-, endo-, or carboxypeptidase activities on the peptidoglycan peptide side chains. Only the class A high-molecular-weight PBPs have clearly demonstrated glycosyltransferase activities that polymerize the glycan strands, and in some species these proteins have been shown to be essential. The Bacillus subtilis genome sequence contains four genes encoding class A PBPs and no other genes with similarity to their glycosyltransferase domain. A strain lacking all four class A PBPs has been constructed and produces a peptidoglycan wall with only small structural differences from that of the wild type. The growth rate of the quadruple mutant is much lower than those of strains lacking only three of the class A PBPs, and increases in cell length and frequencies of wall abnormalities were noticeable. The viability and wall production of the quadruple-mutant strain indicate that a novel enzyme can perform the glycosyltransferase activity required for peptidoglycan synthesis. This activity was demonstrated in vitro and shown to be sensitive to the glycosyltransferase inhibitor moenomycin. In contrast, the quadruple-mutant strain was resistant to moenomycin in vivo. Exposure of the wild-type strain to moenomycin resulted in production of a phenotype similar to that of the quadruple mutant.  相似文献   

5.
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in media low in Mg2+, suggesting a possible involvement of PBP1 in septum formation under these conditions. Using epitope-tagging and immunofluorescence microscopy, we have now shown that PBP1 is localized at division sites in vegetative cells of B. subtilis. In addition, we have used fluorescence and electron microscopy to show that growing ponA mutant cells display a significant septation defect, and finally by immunofluorescence microscopy we have found that while FtsZ localizes normally in most ponA mutant cells, a significant proportion of ponA mutant cells display FtsZ rings with aberrant structure or improper localization, suggesting that lack of PBP1 affects FtsZ ring stability or assembly. These results provide strong evidence that PBP1 is localized to and has an important function in the division septum in B. subtilis. This is the first example of a high-molecular-weight class A PBP that is localized to the bacterial division septum.  相似文献   

6.
The phenotype of a Bacillus subtilis 168 strain with no detectable penicillin-binding protein 4 was examined. Despite the fact that penicillin-binding protein 4 is one of the most penicillin-sensitive proteins in the species, its apparent loss had no obvious effect on the organism or its susceptibility to various beta-lactam antibiotics.  相似文献   

7.
The peptidoglycan cell wall determines the shape and structural integrity of a bacterial cell. Class B penicillin-binding proteins (PBPs) carry a transpeptidase activity that cross-links peptidoglycan strands via their peptide side chains, and some of these proteins are directly involved in cell shape determination. No Bacillus subtilis PBP with a clear role in rod shape maintenance has been identified. However, previous studies showed that during outgrowth of pbpA mutant spores, the cells grew in an ovoid shape for several hours before they recovered and took on a normal rod shape. It was postulated that another PBP, expressed later during outgrowth, was able to compensate for the lack of the pbpA product, PBP2a, and to guide the formation of a rod shape. The B. subtilis pbpH (ykuA) gene product is predicted to be a class B PBP with greatest sequence similarity to PBP2a. We found that a pbpH-lacZ fusion was expressed at very low levels in early log phase and increased in late log phase. A pbpH null mutant was indistinguishable from the wild-type, but a pbpA pbpH double mutant was nonviable. When pbpH was placed under the control of an inducible promoter in a pbpA mutant, viability was dependent on pbpH expression. Growth of this strain in the absence of inducer resulted in conversion of the cells from rods to ovoid/round shapes and lysis. We conclude that PBP2a and PbpH play redundant roles in formation of a rod-shaped peptidoglycan cell wall.  相似文献   

8.
The four class A penicillin-binding proteins (PBPs) of Bacillus subtilis appear to play functionally redundant roles in polymerizing the peptidoglycan (PG) strands of the vegetative-cell and spore walls. The ywhE product was shown to bind penicillin, so the gene and gene product were renamed pbpG and PBP2d, respectively. Construction of mutant strains lacking multiple class A PBPs revealed that, while PBP2d plays no obvious role in vegetative-wall synthesis, it does play a role in spore PG synthesis. A pbpG null mutant produced spore PG structurally similar to that of the wild type; however, electron microscopy revealed that in a significant number of these spores the PG did not completely surround the spore core. In a pbpF pbpG double mutant this spore PG defect was apparent in every spore produced, indicating that these two gene products play partially redundant roles. A normal amount of spore PG was produced in the double mutant, but it was frequently produced in large masses on either side of the forespore. The double-mutant spore PG had structural alterations indicative of improper cortex PG synthesis, including twofold decreases in production of muramic delta-lactam and L-alanine side chains and a slight increase in cross-linking. Sporulation gene expression in the pbpF pbpG double mutant was normal, but the double-mutant spores failed to reach dormancy and subsequently degraded their spore PG. We suggest that these two forespore-synthesized PBPs are required for synthesis of the spore germ cell wall, the first layer of spore PG synthesized on the surface of the inner forespore membrane, and that in the absence of the germ cell wall the cells lack a template needed for proper synthesis of the spore cortex, the outer layers of spore PG, by proteins on the outer forespore membrane.  相似文献   

9.
10.
11.
12.
13.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

14.
Ceftizoxime, a beta-lactam antibiotic with high selective affinity for penicillin-binding protein 2 (PBP2) of Staphylococcus aureus, was used to select a spontaneous resistant mutant of S. aureus strain 27s. The stable resistant mutant ZOX3 had an increased ceftizoxime MIC and a decreased affinity of its PBP2 for ceftizoxime and produced peptidoglycan in which the proportion of highly cross-linked muropeptides was reduced. The pbpB gene of ZOX3 carried a single C-to-T nucleotide substitution at nucleotide 1373, causing replacement of a proline with a leucine at amino acid residue 458 of the transpeptidase domain of the protein, close to the SFN conserved motif. Experimental proof that this point mutation was responsible for the drug-resistant phenotype, and also for the decreased PBP2 affinity and reduced cell wall cross-linking, was provided by allelic replacement experiments and site-directed mutagenesis. Disruption of pbpD, the structural gene of PBP4, in either the parental strain or the mutant caused a large decrease in the highly cross-linked muropeptide components of the cell wall and in the mutant caused a massive accumulation of muropeptide monomers as well. Disruption of pbpD also caused increased sensitivity to ceftizoxime in both the parental cells and the ZOX3 mutant, while introduction of the plasmid-borne mecA gene, the genetic determinant of the beta-lactam resistance protein PBP2A, had the opposite effects. The findings provide evidence for the cooperative functioning of two native S. aureus transpeptidases (PBP2 and PBP4) and an acquired transpeptidase (PBP2A) in staphylococcal cell wall biosynthesis and susceptibility to antimicrobial agents.  相似文献   

15.
Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.  相似文献   

16.
17.
18.
A chemiluminescence method for determining acetylcholinesterase activity is described. It is an adaptation of the chemiluminescence assay of acetylcholine described by Israël & Lesbats [(1981) Neurochem. Int. 3, 81-90; (1981) J. Neurochem. 37, 1475-1483]. The acetylcholinesterase activity is measured by monitoring the increase in light emission produced by the accumulation of choline or by determining the amount of choline generated after a short interval. The assay is rapid and sensitive, and uses the natural substrate of the enzyme. Kinetic data obtained with this procedure for acetylcholinesterase from Torpedo and Electrophorus electric organs were comparable with those obtained by using the method of Ellman, Courtney, Andres & Featherstone [(1961) Biochem. Pharmacol. 7, 88-95]. In addition, it was shown that sodium deoxycholate totally inactivated Torpedo acetylcholinesterase but not the Electrophorus enzyme. Competitive inhibitors of acetylcholinesterase protected the enzyme from inactivation.  相似文献   

19.
The penicillin-binding proteins (PBPs) of Bacillus subtilis were examined in samples collected at various times from sporulating cultures and compared with the PBPs in a presporulation sample. Large increases in vegetative PBPs 2B and 3 and the appearance of at least one new PBP (42,000 daltons) occurred at reproducible times during sporulation. In some strains a second new PBP (60,000 daltons) was also produced. By comparing the PBP activities in sporulating cells and two spo0 mutants we have classified these changes as sporulation-related events rather than the consequences of stationary-phase aging. The other vegetative PBPs (PBPs 1, 2A, 4, and 5) decreased during sporulation, but not in sufficient amount or at the appropriate time to account for the appearance of the new proteins. A possible connection between specific PBP changes and the penicillin-sensitive stages of sporulation is suggested.  相似文献   

20.
The characteristic shape of bacterial cells is mainly determined by the cell wall, the synthesis of which is orchestrated by penicillin-binding proteins (PBPs). Rod-shaped bacteria have two distinct modes of cell wall synthesis, involved in cell elongation and cell division, which are believed to employ different sets of PBPs. A long-held question has been how these different modes of growth are co-ordinated in space and time. We have now identified the cell division protein, EzrA, and a newly discovered protein, GpsB, as key players in the elongation-division cycle of Bacillus subtilis. Mutations in these genes have a synthetic phenotype with defects in both cell division and cell elongation. They also have an unusual bulging phenotype apparently due to a failure in properly completing cell pole maturation. We show that these phenotypes are tightly associated with disturbed localization of the major transglycosylase/transpeptidase of the cell, PBP1. EzrA and GpsB have partially differentiated roles in the localization cycle of PBP1, with EzrA mainly promoting the recruitment of PBP1 to division sites, and GpsB facilitating its removal from the cell pole, after the completion of pole maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号