首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of the eyes during the larval and metamorphic stages of the turbot Psetta maxima (Teleosti) was studied using microscopy. Events during differentiation of both eyes occur simultaneously, and no differences between he migrating and no-migrating eye were observed during metamorphosis. At hatching, the eyes are rudimentary, consisting of a neuroepithelial optic cup and a small lens. During larval development, major changes occur in the lens and retina, in which cones are the only photoreceptors. The appearance of rods is delayed until metamorphosis. The outer ocular layers (sclera and choroid) arise during larval development as thin connective layers with little differentiation. These layers undergo important changes just before and during metamorphosis. These results indicate that development of the individual components of the eye occurs at different times. Those of ectodermal origin appear early, providing a simple visual organ during larval life. By metamorphosis, the eye shows adult characteristics, including two types of photoreceptors, a rich choroid vascular supply and ocular structures involved in protecting, shaping, and moving the eye. J Morphol 233:31–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The visual pigment content of rod photoreceptors in Xenopus larvae was reduced greater than 90% through a combination of vitamin A-deficient diet and constant light. Thereafter, a dose of either all-trans-retinol or 9-cis-retinal was injected intramuscularly, leading to the formation of a rhodopsin (lambdamax 504 nm) or isorhodopsin (lambdamax 487-493 nm) pigment, respectively. Electrophysiological measurements were made of the threshold and spectral sensitivity of the aspartate-isolated PIII (photoreceptoral) component of the electroretinogram. These measures established that either rhodopsin or isorhodopsin subserved visual transduction with the same efficiency as the 519 nm porphyropsin pigment encountered normally. When animals with rhodopsin or isorhodopsin were kept in darkness or placed on a cyclical lighting regimen for 8 days, retinal densitometry showed that either pigment was being converted to porphyropsin; significantly more porphyropsin was formed as a result of cyclical lighting than after complete darkness.  相似文献   

3.
1. The drone retina is composed essentially of only two types of cells: a population of identical photoreceptor cells occupying 38% of the volume is embedded in a syncytium of glia (called outer pigment cells). Nearly all the mitochondria are in the photoreceptors. 2. A retinal slice consumes 18 microliter O2 (ml tissue)-1 min-1 in the dark for up to 6 h, even without exogenous substrate; in 6 h this would require the equivalent of 127 mM glucose in the photoreceptors or 8.7 mg glycogen (ml tissue)-1. 3. Freshly dissected retinas contain about 45 mg glycogen (ml tissue)-1, but this appears, from electron micrographs and from the PAS reaction, to be exclusively in the glia. After superfusion with substrate-free Ringer solution for 30 min, slices of retina contained less than 20 microM glucose. It therefore appears that to sustain respiration, carbohydrate substrate must be transferred from the glia to the photoreceptors. 4. Even after 6 h superfusion with substrate-free Ringer solution O2 consumption (QO2) was not increased by exogenous glucose, pyruvate, trehalose or lactate, nor decreased by 2-deoxy-D-glucose. QO2 was increased 2-3 fold by either light stimulation or (for at least 20 min) by 50 microM dinitrophenol. 5. QO2 was only slightly reduced when Na-dependent glucose transport was inhibited either by reduction of extracellular [Na+], or the presence of phlorizin. 6. It is suggested that drone retinal function does not require the uptake of glucose by the photoreceptors, but that the glia do take up glucose.  相似文献   

4.
5.
Evolutionary novelties represent challenges to biologists, particularly those who would like to understand the developmental and genetic changes responsible for their appearance. Most modern aphids possess two apparent evolutionary novelties: cyclical parthenogenesis (a life cycle with both sexual and asexual phases) and viviparity (internal development and live birth of progeny) in their asexual phase. Here I discuss the evolution of these apparent novelties from a developmental standpoint. Although a full understanding of the evolution of cyclical parthenogenesis and viviparity in aphids can seem a daunting task, these complex transitions can at least be broken down into a handful of steps. I argue that these should include the following: a differentiation of two developmentally distinct oocytes; de novo synthesis of centrosomes and modification of meiosis during asexual oogenesis; a loss or bypass of any cell cycle arrest and changes in key developmental events during viviparous oogenesis; and a change in how mothers specify the sexual vs. asexual fates of their progeny. Grappling with the nature of such steps and the order in which they occurred ought to increase our understanding and reduce the apparent novelty of complex evolutionary transitions. J. Exp. Zool. (Mol. Dev. Evol.) 318B:448-459, 2012. ? 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Retinal pigment epithelial (RPE) cells play an important role in normal functioning of retina and photoreceptors, and some retinal degenerations arise due to malfunctioning RPE. Retinal pigment epithelium transplantation is being explored as a strategy to rescue degenerating photoreceptors in diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Additionally, RPE-secreted factors could rescue degenerating photoreceptors by prolonging survival or by their ability to differentiate and give rise to photoreceptors by transdifferentiation. In this study, we have explored what role cell density could play in differentiation induced in a human retinal progenitor cell line, in response to RPE-secreted growth factors. Retinal progenitors plated at low (1 × 104 cells/cm2), medium (2–4 × 104 cells/cm2), and high (1 × 105 cells/cm2) cell density were exposed to various dilutions of RPE-conditioned medium (secreted factors) under conditions of defined medium culture. Progenitor cell differentiation was monitored phenotypically (morphological, biochemical analysis, and immunophenotyping, and western blot analysis were performed). Our data show that differentiation in response to RPE-secreted factors is modulated by cell density and dilutions of conditioned medium. We conclude that before embarking on RPE transplantation as a modality for treatment of RP and AMD, one will have to determine the role that cell density and inhibitory and stimulatory neurotrophins secreted by RPE could play in the efficacy of survival of transplants. We report that RPE-conditioned medium enhances neuronal phenotype (photoreceptors, bipolars) at the lowest cell density in the absence of cell–cell contact. Eighty percent to 90% of progenitor cells differentiate into photoreceptors and bipolars at 50% concentration of conditioned medium, while exposure to 100% conditioned medium might increase multipolar neurons (ganglionic and amacrine phenotypes) to a small degree. However, no clear-cut pattern of differentiation in response to RPE-secreted factors is noted at higher cell densities.  相似文献   

8.
9.
10.
Cells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix. Many cells are surrounded by extracellular matrix that allows for tissue mechanical function. Although prior studies demonstrate that extracellular stiffness is important in cell differentiation, morphology and phenotype, it remains largely unknown how a cell’s biological response to cyclical loading varies with changes in surrounding substrate stiffness. Understanding these processes is important for understanding cells that are cyclically loaded during daily in vivo activities (e.g. chondrocytes and walking). This study uses high-performance liquid chromatography – mass spectrometry to identify metabolomic changes in primary chondrocytes under cyclical compression for 0–30 minutes in low- and high-stiffness environments. Metabolomic analysis reveals metabolites and pathways that are sensitive to substrate stiffness, duration of cyclical compression, and a combination of both suggesting changes in extracellular stiffness in vivo alter mechanosensitive signaling. Our results further suggest that cyclical loading minimizes matrix deterioration and increases matrix production in chondrocytes. This study shows the importance of modeling in vivo stiffness with in vitro models to understand cellular mechanotransduction.  相似文献   

11.

Transient receptor potential (TRP) channels are expressed in the endometrium but it is unknown if they are modulated through the estrous cycle (EC). This study was undertaken to identify the modulation of the TRPC gene and protein isoforms in bovine uterine epithelium, as a model for human, throughout the EC. Changes in the expression of TRPC genes in bovine uterine epithelium throughout the EC were measured using Real-Time PCR, while immunohistochemistry and immunocytochemistry were used to determine the localization of these channels. Out of the 7 members of the TRPC family, TRPC1, 2, 3, 4 and 6 genes were expressed in bovine uterine epithelial tissue and TRPC 5 and 7 were not. Gene expression levels of all TRPC isoforms underwent cyclical changes throughout the EC. Moreover, cyclical changes were detected in the protein levels of TRPC1 and TRPC6 throughout the EC. These findings show that TRPC channels are modulated through the EC and therefore may have a role in reproductive events.

  相似文献   

12.
Fontaine  V; Hicks  D; Dreyfus  H 《Glycobiology》1998,8(2):183-190
To examine at which stage the unusual ganglioside composition observed in adult retinal photoreceptor cells was established, and to see whether ganglioside changes could be correlated to distinct maturational events, quantitative and qualitative variations in gangliosides within pure sheets of photoreceptors during postnatal differentiation and aging of retina were studied. Retinas were separated into their component layers, (particularly photoreceptor layers uncontaminated by other neuronal types) by exploiting a technique of mechanical separation by vibratome. We extracted lipids from the cell membranes and analyzed the ganglioside composition by high performance thin layer chromatography. The data show that from the earliest recordable postnatal age (6 days) until late in life (18 months), photoreceptors contain low quantities of lipid-bound N-acetyl neuraminic acid and a simplified ganglioside profile compared to inner retinal neurons. Specific ganglioside changes occur within photoreceptor cells during postnatal maturation and aging, with downregulation of a-pathway GM1 and overlapping upregulation of b- pathway GD1b taking place during the period corresponding to outer segment formation, correlating with the onset of retinal function.   相似文献   

13.
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly saturate the amplitude of their photoresponse. In search of a molecular explanation for this observation we assessed Ca2+-dependent modulation of ligand sensitivity in cyclic GMP-gated (CNG) ion channels of intact mammalian rods and cones. Solitary photoreceptors were isolated by gentle proteolysis of ground squirrel retina. Rods and cones were distinguished by whether or not their outer segments bind PNA lectin. We measured membrane currents under voltage-clamp in photoreceptors loaded with Diazo-2, a caged Ca2+ chelator, and fixed concentrations of 8Br-cGMP. At 600 nM free cytoplasmic Ca2+ the midpoint of the cone CNG channels sensitivity to 8BrcGMP, 8BrcGMPK1/2, is approximately 2.3 microM. The ligand sensitivity is less in rod than in cone channels. Instantly decreasing cytoplasmic Ca2+ to <30 nM activates a large inward membrane current in cones, but not in rods. Current activation arises from a Ca2+ -dependent modulation of cone CNG channels, presumably because of an increase in their affinity to the cyclic nucleotide. The time course of current activation is temperature dependent; it is well described by a single exponential process of approximately 480 ms time constant at 20-21 degrees C and 138 ms at 32 degrees C. The absence of detectable Ca2+-dependent CNG current modulation in intact rods, in view of the known channel modulation by calmodulin in-vitro, affirms the modulation in intact rods may only occur at low Ca2+ concentrations, those expected at intensities that nearly saturate the rod photoresponse. The correspondence between Ca2+ dependence of CNG modulation and the ability to light adapt suggest these events are correlated in photoreceptors.  相似文献   

14.
Multi-spanning membrane protein loops are directed alternately into the cytosol or ER lumen during cotranslational integration. Nascent chain exposure is switched after a newly synthesized transmembrane segment (TMS) enters the ribosomal tunnel. FRET measurements revealed that each TMS is initially extended, but folds into a compact conformation after moving 6-7 residues from the peptidyltransferase center, irrespective of loop size. The ribosome-induced folding of each TMS coincided with its photocrosslinking to ribosomal protein L17 and an inversion of compartmental exposure. This correlation indicates that successive TMSs fold and bind at a specific ribosomal tunnel site that includes L17, thereby triggering structural rearrangements of multiple components in and on both sides of the ER membrane, most likely via TMS-dependent L17 and/or rRNA conformational changes transmitted to the surface. Thus, cyclical changes at the membrane during integration are initiated by TMS folding, even though nascent chain conformation and location vary dynamically in the ribosome tunnel. Nascent chains therefore control their own trafficking.  相似文献   

15.
Summary Intracellular studies on photoreceptors in the eyes of the giant clamTridacna give evidence for two types of light-sensitive cells, both of which are hyperpolarized by light. These cells are distinguished by the presence or absence of spikes and corresponding characteristics of the receptor potential. In non-spiking (NS) receptors, the average resting potential in the dark is low (-15 mV) and peak receptor potentials are large (to 100 mV) and adapt rapidly to light. Spiking (S) receptors have higher average resting potentials (-45 mV), but receptor potentials do not exceed 20 mV and also do not adapt to light. The spikes in S-receptors are small (3–8 mV), occur spontaneously at low levels of illumination and are inhibited by light. Bursts of spikes arise on the repolarizing off-component of the receptor potential. Light adaptation increases the excitability of S-receptors in terms of a higher frequency and shorter latency of the off response burst. The receptor potential in both cells is due to a light-activated increase in membrane conductance to potassium ions. Membrane conductance decreases in NS-receptors in relation to light adaptation. Unlike the scallop eye, no depolarizing photoreceptors are present.Abbreviations NS non-spiking photoreceptors - S spiking photoreceptors - SW seawater  相似文献   

16.
The retinal pigment epithelium (RPE) is essential for retinoid recycling and phagocytosis of photoreceptors. Understanding of proteome changes that mediate oxidative stress-induced degeneration of RPE cells may provide further insight into the molecular mechanisms of retinal diseases. In the current study, comparative proteomics has been applied to investigate global changes of RPE proteins under oxidative stress. Proteomic techniques, including 2D SDS-PAGE, differential gel electrophoresis (DIGE), and tandem time-of-flight (TOF-TOF) mass spectrometry, were used to identify early protein markers of oxidative stress in the RPE. Two biological models of RPE cells revealed several differentially expressed proteins that are involved in key cellular processes such as energy metabolism, protein folding, redox homeostasis, cell differentiation, and retinoid metabolism. Our results provide a new perspective on early signaling molecules of redox imbalance in the RPE and putative therapeutic target proteins of RPE diseases caused by oxidative stress.  相似文献   

17.
Through mechanisms still unknown, the apparently homogeneous neuroepithelium of the embryonic optic cup differentiates into such divergent cell types as photoreceptors, glia, and various subsets of neurons. Questions that still remain unanswered in this field include the timing and mechanism of action of the "instructive" events directing each neuroepithelial cell to undergo the sequence of phenotypic changes necessary to develop into a specific retinal cell type. This laboratory is investigating some of these questions using cultures in which dissociated neural retina cells, obtained before the onset of overt photoreceptor differentiation, develop at low density in the absence of glia and pigment epithelium. The cultures initially are a morphologically homogeneous population of process-free, round cells. Some cells retain this morphology throughout the first week in vitro, while others develop either as photoreceptors or as multipolar neurons. Photoreceptors elongate and become very asymmetric as they do in vivo, with characteristic compartments orderly arranged along their longitudinal axis (an outer segment-like process, inner segment, cell body, and a characteristically short, single neurite). Cell polarization can also be observed in the distribution of opsin immunoreactive materials and some cytoskeletal elements. Thus, certain precursor cells present in the embryonic retina seem to be programmed to differentiate into photoreceptors even when developing in the absence of contacts with other retinal cells. However, interactions with other constituents of the retina/pigment epithelium complex are probably necessary to ensure final photoreceptor maturation, including further growth of the opsin-rich outer segment process.  相似文献   

18.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

19.
Muscles expend energy to perform active work during locomotion, but they may also expend significant energy to produce force, for example when tendons perform much of the work passively. The relative contributions of work and force to overall energy expenditure are unknown. We therefore measured the mechanics and energetics of a cyclical bouncing task, designed to control for work and force. We hypothesized that near bouncing resonance, little work would be performed actively by muscle, but the cyclical production of force would cost substantial metabolic energy. Human subjects (n = 9) bounced vertically about the ankles at inversely proportional frequencies (1-4 Hz) and amplitudes (15-4 mm), such that the overall rate of work performed on the body remained approximately constant (0.30 ± 0.06 W/kg), but the forces varied considerably. We used parameter identification to estimate series elasticity of the triceps surae tendon, as well as the work performed actively by muscle and passively by tendon. Net metabolic energy expenditure for bouncing at 1 Hz was 1.15 ± 0.31 W/kg, attributable mainly to active muscle work with an efficiency of 24 ± 3%. But at 3 Hz (near resonance), most of the work was performed passively, so that active muscle work could account for only 40% of the net metabolic rate of 0.76 ± 0.28 W/kg. Near resonance, a cost for cyclical force that increased with both amplitude and frequency of force accounted for at least as much of the total energy expenditure as a cost for work. Series elasticity reduces the need for active work, but energy must still be expended for force production.  相似文献   

20.
The cranchiid Teuthowenia pellucida, like many deep-sea squid species, possesses large eyes that maximise light sensitivity in a nearly aphotic environment. To assess ontogenetic changes in the visual system, we conducted morphometric and histological analyses of the eyes using specimens from New Zealand collections. While the ratio between eye diameter and mantle length maintained a linear relationship throughout development, histological sections of the retina revealed that the outer photoreceptor layer became proportionally longer as the animal aged, coincident with a habitat shift into deeper, darker ocean strata. Other retinal layers maintained the same absolute thickness as was observed in paralarvae. Granules of the pigment ommin, normally located in the screening layer positioned at the base of the photoreceptors, were also observed at the outer end of the photoreceptor segments throughout the retina in young and mid-sized specimens. Early developmental stages of this species, dwelling in shallow waters, may therefore rely on migratory ommin to help shield photoreceptors from excess light and prevent over-stimulation. The oldest, deeper-dwelling specimens of T. pellucida examined had longer photoreceptors, and little or no migrated ommin was observed; we suggest therefore that short-term adaptive mechanisms for bright light conditions may be used primarily during epipelagic, early life stages in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号