首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C A Wilcox  E N Olson 《Biochemistry》1987,26(4):1029-1036
The BC3Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins [Olson, E. N., Towler, D. A., & Glaser, L. (1985) J. Biol. Chem. 260, 3784-3790]. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages [Olson, E. N., & Spizz, G. (1986) J. Biol. Chem. 261, 2458-2466]. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, we examined the subcellular localization of the major fatty acylated proteins in BC3Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [3H]palmitate and [3H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins.  相似文献   

2.
Specificity of fatty acid acylation of cellular proteins   总被引:38,自引:0,他引:38  
Labeling of the BC3H1 muscle cell line with [3H] palmitate and [3H]myristate results in the incorporation of these fatty acids into a broad spectrum of different proteins. The patterns of proteins which are labeled with palmitate and myristate are distinct, indicating a high degree of specificity of fatty acylation with respect to acyl chain length. The protein-linked [3H]palmitate is released by treatment with neutral hydroxylamine or by alkaline methanolysis consistent with a thioester linkage or a very reactive ester linkage. In contrast, only a small fraction of the [3H]myristate which is attached to proteins is released by treatment with hydroxylamine or alkaline methanolysis, suggesting that myristate is linked to proteins primarily through amide bonds. The specificity of fatty acid acylation has also been examined in 3T3 mouse fibroblasts and in PC12 cells, a rat pheochromacytoma cell line. In both cells, palmitate is primarily linked to proteins by a hydroxylamine-labile linkage while the major fraction of the myristic acid (60-70%) is linked to protein via amide linkage and the remainder via an ester linkage. Major differences were noted in the rate of fatty acid metabolism in these cells; in particular in 3T3 cells only 33% of the radioactivity incorporated from myristic acid into proteins is in the form of fatty acids. The remainder is presumably the result of conversion of label to amino acids. In BC3H1 cells, palmitate- and myristate-containing proteins also exhibit differences in subcellular localization. [3H]Palmitate-labeled proteins are found almost exclusively in membranes, whereas [3H]myristate-labeled proteins are distributed in both the soluble and membrane fractions. These results demonstrate that fatty acid acylation is a covalent modification common to a wide range of cellular proteins and is not restricted solely to membrane-associated proteins. The major acylated proteins in the various cell lines examined appear to be different, suggesting that the acylated proteins are concerned with specialized cell functions. The linkages through which fatty acids are attached to proteins also appear to be highly specific with respect to the fatty acid chain length.  相似文献   

3.
A wide range of proteins of cellular and viral origin have been shown to be modified covalently by long-chain fatty acids. Recent studies have revealed at least two distinct types of protein fatty acylation which involve different fatty acyltransferases. The abundant fatty acid, palmitate, is incorporated post-translationally through a thiol ester linkage into a variety of cell surface glycoproteins and non-glycosylated intracellular proteins. In contrast, the rare fatty acid, myristate, is incorporated co-translationally through an amide linkage into numerous intracellular proteins. Identification of proteins that contain covalent fatty acids has revealed that this modification is common to a broad array of proteins that play important roles in transmembrane regulatory pathways. For many of these proteins, the fatty acid moiety appears to play an important role in directing the polypeptide to the appropriate membrane and in mediating protein-protein interactions within the membrane. This review will summarize recent studies that define different pathways for protein fatty acylation and will consider the potential functions for this unique covalent modification of proteins.  相似文献   

4.
Fatty acylation of Src family kinases is essential for localization of the modified proteins to the plasma membrane and to plasma membrane rafts. It has been suggested that the presence of saturated fatty acyl chains on proteins is conducive for their insertion into liquid ordered lipid domains present in rafts. The ability of unsaturated dietary fatty acids to be attached to Src family kinases has not been investigated. Here we demonstrate that heterogeneous fatty acylation of Src family kinases occurs and that the nature of the attached fatty acid influences raft-mediated signal transduction. By using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we show that in addition to 14:0 (myristate), 14:1 and 14:2 fatty acids can be attached to the N-terminal glycine of the Src family kinase Fyn when the growth media are supplemented with these dietary fatty acids. Moreover, we synthesized novel iodinated analogs of oleate and stearate, and we showed that heterogeneous S-acylation can occur on cysteine residues within Fyn as well as Galpha, GAP43, and Ras. Modification of Fyn with unsaturated or polyunsaturated fatty acids reduced its raft localization and resulted in decreased T cell signal transduction. These studies establish that heterogeneous fatty acylation is a widespread occurrence that serves to regulate signal transduction by membrane-bound proteins.  相似文献   

5.
In addition to a prominent role in tissue energy conversion, fatty acids are involved in signal transduction and modulation of cellular protein localization and function. The latter is accomplished by acylation of specific cellular proteins. In the present study the amount of fatty acyl moieties covalently bound to cardiac proteins and the effect of myocardial ischemia and reperfusion on the degree and relative fatty acyl composition of cardiac proteins have been investigated in isolated rat hearts. In the normoxic heart about 0.32% of the cellular fatty acyl pool is covalently bound to proteins. Approximately 90% of these fatty acyl chains are thio-esterified, whereas a relatively minor part is attached to cardiac proteins through amide linkage. Thio-esterified fatty acyl chains are derived from palmitic, stearic, oleic, linoleic, arachidonic and docosahexaenoic acid. In contrast, amide linked protein acylation shows a preference for myristic acyl chains. Acute ischemia and reperfusion inflicted upon the isolated rat heart did enhance significantly the content of (unesterified) fatty acids, but did neither affect the degree of protein acylation nor the relative fatty acyl composition of acylated proteins in cardiac tissue.  相似文献   

6.
Fatty acid acylation of platelet proteins was studied by measuring incorporation of [3H]palmitate and [3H]myristate after incubation at 37 degrees C for 4 h. About ten major radiolabeled proteins were detected after SDS-polyacrylamide gel electrophoresis and fluorography, for both fatty acids. Cleavage by hydroxylamine treatment indicated an ester bond of either palmitate or myristate to these proteins. Nevertheless, a single 50 kDa peptide was specifically modified by an amide-linked myristate. The functions of acylated proteins in platelets are still unknown, but their relation with DLPC-induced shape changes and vesicle shedding is excluded.  相似文献   

7.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   

8.
Protein acylation in Tetrahymena   总被引:1,自引:0,他引:1  
Examination of exhaustively delipidated Tetrahymena mimbres cells by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of several protein bands containing covalently linked fatty acids. Palmitic (16:0) and stearic (18:0) acids together accounted for approximately 90% of the protein-linked acyl chains, with myristic acid (14:0) comprising most of the remainder. Each of these three fatty acids was present mainly in alkali-stable linkage, indicating that unlike most other systems examined, fatty acids are attached to proteins of Tetrahymena principally by amide bonds. Smaller proportions of the acyl chains were susceptible to release by hydroxylaminolysis or by alkaline hydrolysis as would be expected from an ester linkage. The protein-bound acyl chains accounted for 0.3% of the cells' total fatty acids. They closely resembled in composition the highly saturated free fatty acid pool but not the vast pool of glycerolipid-associated fatty acids, which were mainly unsaturated. Cells subjected to thermal stress by rapid chilling from 39 to 15 degrees C responded by sharply increasing the ratio of palmitate to stearate in covalent association with proteins.  相似文献   

9.
The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function.  相似文献   

10.
Covalent attachment of fatty acids to proteins is a common form of protein modification which has been shown to influence both structure and interaction with membranes. Endothelial nitric oxide synthase (eNOS) is dually acylated by the fatty acids myristate and palmitate. We have synthesized four peptides corresponding to the first 28 amino acids of the N-terminal region of eNOS. Besides the nonacylated eNOS sequence, three additional peptides with different degrees of acylation have been obtained: myristoylated, doubly palmitoylated, and dually myristoylated and doubly palmitoylated. Acylation itself, myristic and/or palmitic, confers the peptide the ability to adopt extended conformations, indicated by the fact that the CD spectrum of all acylated peptides has a minimum at approximately 215 nm characteristic of beta-sheet structure. The nonacylated sequence interacts with model membranes composed of acidic phospholipids probably through ionic interactions with the polar headgroup of the phospholipids. However, the acylated peptides are able to insert deeply into the hydrophobic core of both neutral and acidic phospholipids, maintaining the spectral features of extended conformations. When DMPC vesicles containing cholesterol and sphingomyelin at 10% were used, the insertion of the triacylated peptide almost completely canceled the thermal transition, although the interaction of the other acylated peptides also reduced the transition amplitude but to a much lower extent and affected only the acyl chains in the fluid state.  相似文献   

11.
Fatty acid acylation of vaccinia virus proteins.   总被引:7,自引:6,他引:1       下载免费PDF全文
Labeling of vaccinia virus-infected cells with [3H]myristic acid resulted in the incorporation of label into two viral proteins with apparent molecular weights of 35,000 and 25,000 (designated M35 and M25, respectively). M35 and M25 were expressed in infected cells after the onset of viral DNA replication, and both proteins were present in purified intracellular virus particles. Virion localization experiments determined M25 to be a constituent of the virion envelope, while M35 appeared to be peripherally associated with the virion core. M35 and M25 labeled by [3H]myristic acid were stable to treatment with neutral hydroxylamine, suggesting an amide-linked acylation of the proteins. Chromatographic identification of the protein-bound fatty acid moieties liberated after acid methanolysis of M25, isolated from infected cells labeled during a 4-h pulse, resulted in the recovery of 25% of the protein-bound fatty acid as myristate-associated label and 75% as palmitate, indicating that interconversion of myristate to palmitate had occurred during the labeling period. Similar analyses of M25 and M35, isolated from infected cells labeled during a 0.5-h pulse, determined that 46 and 43%, respectively, of the protein-bound label had been elongated to palmitate even during this brief labeling period. In contrast, M25 and M35 isolated from purified intracellular virions labeled continuously during 24 h of growth contained 75 and 70%, respectively, myristate-associated label, suggesting greater stability of these proteins or a favored interaction of the proteins containing myristate with the maturing or intracellular virion.  相似文献   

12.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

13.
Two classes of fatty acid acylated proteins exist in eukaryotic cells   总被引:35,自引:3,他引:32       下载免费PDF全文
Labelling of cultured cells with [3H]palmitic and [3H]myristic acids demonstrates that each of these fatty acids modifies a substantially different subset of cellular proteins. Hydroxylamine treatment can be used to differentiate sensitive thioester linkages to palmitate from insensitive amide linkages to myristate. Several palmitoylated proteins are surface-oriented glycoproteins while all of the myristylated proteins appear to be internal. Myristate addition is much more tightly coupled to protein synthesis than palmitoylation, which is able to continue at a reduced level even in the prolonged absence of protein synthesis. Acyl proteins patterns were affected both qualitatively and quantitatively by transformation and growth status. The preferential addition of palmitate to the transferrin receptor and myristate to pp60src, and the absence of these modifications from several other proteins is reported. We propose a nomenclature for fatty acyl proteins based on these observations.  相似文献   

14.
In vitro acylation of the transferrin receptor   总被引:6,自引:0,他引:6  
In vitro fatty acylation of the transferrin receptor with [3H]tetradecanoate or [3H]tetradecanoyl-CoA has been demonstrated for isolated sheep reticulocyte plasma membranes. Although less than 5% of the receptor was labeled in vitro, the acylated protein could be readily observed after sodium dodecyl sulfate-gel electrophoresis. The acylated transferrin receptor in the reticulocyte membrane was specifically precipitated with a monoclonal antibody and was absent from mature red cell membranes. Incorporation of fatty acid was dependent on ATP, and fatty acid was 5-10 times less effective as an acyl donor than the acyl-CoA derivative, pointing out the strong potential of this reagent for in vitro acylation of membrane proteins. During in vitro maturation of reticulocytes, the receptor is released in vesicles into the incubation medium. Using reticulocytes labeled with [3H]tetradecanoate, it can be shown that the 3H-labeled receptor is transferred from the cells to the vesicles without loss of acyl groups, suggesting that the vesiculation process does not involve deacylation.  相似文献   

15.
Distinct sets of cellular proteins were labeled with [3H]myristic and [3H]palmitic acids in primary (rat neurons and astroglia) and continuous (murine N1E-115 neuroblastoma and rat C6 glioma) cell cultures derived from the nervous system. Both soluble and membrane proteins were modified by myristate in a hydroxylamine-stable (amide) linkage, while palmitoylated proteins were esterlinked and almost exclusively membrane bound. Chain elongation of both labeled fatty acids prior to acylation was observed, but no protein amide-liked [3H]myristate originating from [3H]palmitate was detected. Fatty acylation profiles differed considerably among most of the cell lines, except for rat astroglial and glioma cells in which myristoylated proteins appeared to be almost identical based on SDS gel electrophoresis. An unidentified 47 kDa myristoylated protein was labeled to a significantly greater extent in astroglial than in glioma cells; the expression of this protein could be related to transformation or development in cells of glial origin.  相似文献   

16.
Mycoplasma capricolum, a procaryotic sterol and fatty acid auxotroph was grown on media supplemented with [3H]palmitate or [3H]oleate. The isolated bacterial membranes were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Of the more than 50 membrane polypeptides revealed by Coomassie blue staining, approximately 25 were labeled with [3H]palmitate and only about 6 were labeled with [3H]oleate. Exhaustive delipidation of the membranes with chloroform:methanol did not alter the labeling pattern. Treatment of delipidated membranes by mild alkaline hydrolysis released up to 71% of the [3H]palmitate and 93% of the [3H]oleate. The data suggest that numerous membrane proteins of M. capricolum are covalently modified by acylation with saturated and unsaturated fatty acids. Cerulenin, a specific inhibitor of fatty acid synthesis had no effect on the labeling of mycoplasma membrane proteins by either [3H]palmitate or [3H]oleate. A small amount of membrane-associated cholesterol previously shown to stimulate sequentially the synthesis of unsaturated phospholipid, RNA, and protein (Dahl, J. S., and Dahl, C. E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 692-696) specifically enhances the acylation of certain proteolipids by oleate but not by palmitate.  相似文献   

17.
Two proteins in the yeast Saccharomyces cerevisiae that are encoded by the genes RAS1 and RAS2 are structurally and functionally homologous to proteins of the mammalian ras oncogene family. We examined the role of fatty acylation in the maturation of yeast RAS2 protein by creating mutants in the putative palmitate addition site located at the carboxyl terminus of the protein. Two mutations, Cys-318 to an opal termination codon and Cys-319 to Ser-319, were created in vitro and substituted in the chromosome in place of the normal RAS2 allele. These changes resulted in a failure of RAS2 protein to be acylated with palmitate and a failure of RAS2 protein to be localized to a membrane fraction. The mutations yielded a Ras2- phenotype with respect to the ability of the resultant mutants to grow on nonfermentable carbon sources and to complement ras1- mutants. However, overexpression of the ras2Ser-319 product yielded a Ras+ phenotype without a corresponding association of the mutant protein with the membrane fraction. We conclude that the presence of a fatty acyl moiety is important for localizing RAS2 protein to the membrane where it is active but that the fatty acyl group is not an absolute requirement of RAS2 protein function.  相似文献   

18.
A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory activities of these molecules.  相似文献   

19.
Fatty acid acylation of salivary mucin in rat submandibular glands   总被引:2,自引:0,他引:2  
The acylation of salivary mucin with fatty acids and its biosynthesis was investigated by incubating rat submandibular salivary gland cells with [3H]palmitic acid and [3H]proline. The elaborated extracellular and intracellular mucus glycoproteins following delipidation, Bio-Gel P-100 chromatography, and CsCl equilibrium density gradient centrifugation were analyzed for the distribution of the labeled tracers. Both preparations gave single bands at the CsCl density of 1.48, in which carbohydrate peaks coincided with that of the labels. The [3H]palmitic acid in these glycoproteins was susceptible to cleavage by alkali and hydroxylamine, thus indicating the ester nature of the bond. With both intracellular and extracellular glycoproteins deacylation caused the glycoproteins to band in the CsCl gradient at a density of 1.55. The incorporation of both markers into mucus glycoprotein increased steadily with time up to 4 h, at which time about 65% of [3H]palmitate and [3H]proline were found in the extracellular glycoprotein and 35% in the intracellular glycoprotein. The incorporation ratio of proline/palmitate, while showing an increase with incubation time in the extracellular glycoprotein, remained essentially unchanged with time in the intracellular glycoprotein and at 4 h reached respective values of 0.14 and 1.12. The fact that the proline/palmitate incorporation ratio in the intracellular glycoprotein at 1 h of incubation was 22 times higher than in the extracellular and 8 times higher after 4 h suggests that acylation occurs intracellularly and that fatty acids are added after apomucin polypeptide synthesis. As the incorporation of palmitate within the intracellular mucin was greater in the mucus glycoprotein subunit, it would appear that fatty acid acylation of mucin subunits preceeds their assembly into the mucus glycoprotein polymer.  相似文献   

20.
Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and ω-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on ω-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4′′′-OH of the rhamnose residue of rutin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号