首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Antimicrobial effector mechanisms are central to the function of the innate immune response in host defense against microbial pathogens. In humans, activation of Toll-like receptor 2/1 (TLR2/1) on monocytes induces a vitamin D dependent antimicrobial activity against intracellular mycobacteria. Here, we report that TLR activation of monocytes triggers induction of the defensin beta 4 gene (DEFB4), requiring convergence of the IL-1β and vitamin D receptor (VDR) pathways. TLR2/1 activation triggered IL-1β activity, involving the upregulation of both IL-1β and IL-1 receptor, and downregulation of the IL-1 receptor antagonist. TLR2/1L induction of IL-1β was required for upregulation of DEFB4, but not cathelicidin, whereas VDR activation was required for expression of both antimicrobial genes. The differential requirements for induction of DEFB4 and cathelicidin were reflected by differences in their respective promoter regions; the DEFB4 promoter had one vitamin D response element (VDRE) and two NF-κB sites, whereas the cathelicidin promoter had three VDREs and no NF-κB sites. Transfection of NF-κB into primary monocytes synergized with 1,25D3 in the induction of DEFB4 expression. Knockdown of either DEFB4 or cathelicidin in primary monocytes resulted in the loss of TLR2/1-mediated antimicrobial activity against intracellular mycobacteria. Therefore, these data identify a novel mechanism of host defense requiring the induction of IL-1β in synergy with vitamin D activation, for the TLR-induced antimicrobial pathway against an intracellular pathogen.  相似文献   

3.
An essential function of the innate immune system is to directly trigger antimicrobial mechanisms to defend against invading pathogens. In humans, one such pathway involves activation by TLR2/1L leading to the vitamin D-dependent induction of antimicrobial peptides. In this study, we found that TLR2/1-induced IL-15 was required for induction of CYP27b1, the VDR and the downstream antimicrobial peptide cathelicidin. Although both IL-15 and IL-4 triggered macrophage differentiation, only IL-15 was sufficient by itself to induce CYP27b1 and subsequent bioconversion of 25-hydroxyvitamin D3 (25D3) into bioactive 1,25D3, leading to VDR activation and induction of cathelicidin. Finally, IL-15-differentiated macrophages could be triggered by 25D3 to induce an antimicrobial activity against intracellular Mycobacterium tuberculosis. Therefore, IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway.  相似文献   

4.
Bronchial epithelial cells represent the first line of defense against invading airborne pathogens. They are important contributors to innate mucosal immunity and provide a variety of antimicrobial effectors. However, mucosal surfaces are prone to contact with pathogenic, as well as nonpathogenic microbes, and therefore, immune recognition principles have to be tightly controlled to avoid uncontrolled permanent activation. TLRs have been shown to recognize conserved microbial patterns and to mediate inducible activation of innate immunity. Our experiments demonstrate that bronchial epithelial cells express functional TLR1-6 and TLR9 and thus make use of a common principle of professional innate immune cells. Although it was observed that TLR2 ligands dependent on heterodimeric signaling either with TLR1 or TLR6 were functional, other ligands like lipoteichoic acid were not. Additionally, it was found that bronchial epithelial cells could be stimulated only marginally by Gram-positive bacteria bearing known TLR2 ligands while Gram-negative bacteria were easily recognized. This correlated with low expression of TLR2 and the missing expression of the coreceptor CD36. Transgenic expression of both receptors restored responsiveness to the complete set of TLR2 ligands and Staphylococcus aureus. Additional gene-array experiments confirmed hyporesponsiveness to this bacterium while Pseudomonas aeruginosa and respiratory syncytial virus induced common, as well as pathogen-specific, sets of genes. The findings indicate that bronchial epithelium regulates its sensitivity to recognize microbes by managing receptor expression levels. This could serve the special needs of controlled microbial recognition in mucosal compartments.  相似文献   

5.
The innate immune system provides the host with an immediate and rapid defense against invading microbes. Detection of foreign invaders is mediated by a class of receptors that are known as the pattern recognition receptors, such as the family of Toll-like receptors (TLRs). In humans, ten functional TLRs have been identified and they respond to conserved pathogen-associated molecular patterns derived from bacteria, mycoplasma, fungi and viruses. TLR activation leads to direct antimicrobial activity against both intracellular and extracellular bacteria, and induces an antiviral gene program. Recently, it was reported that TLR2 activation leads to the use of vitamin D3 as a mechanism to combat Mycobacterium tuberculosis. Here, we focus on recent findings concerning the TLR-induced antimicrobial mechanisms in humans and the therapeutic implications of these findings. Owing to their capability to combat a wide array of pathogens, TLRs are attractive therapeutic targets. However, additional knowledge about their antimicrobial mechanisms is needed.  相似文献   

6.
Toll-like receptors (TLRs) play important inductive roles in innate immune responses for host defense against invading microbial pathogens. Activation of TLR4 by lipopolysaccharide (LPS) induces dimerization of TLR4 and, subsequently, activation of downstream signaling pathways including nuclear factor-kappa B and interferon regulatory factor 3. TLR4 dimerization may be an early regulatory event in activating signaling pathways induced by LPS. Here, biochemical evidence is reported that isoliquiritigenin, one of the major ingredients derived from licorice root, inhibits LPS-induced TLR4 dimerization resulting in inhibition of nuclear factor-kappa B and interferon regulatory factor 3 activation, and cyclooxygenase-2 and inducible nitric oxide synthase expression. These results suggest that isoliquiritigenin modulates TLR-mediated signaling pathways at the receptor level. Furthermore, these results suggest that TLRs themselves may be important targets for the prevention of chronic inflammatory diseases.  相似文献   

7.
Signal transduction following binding of lipopolysaccharide (LPS) to Toll-like receptor 4 (TLR4) is an essential aspect of host innate immune responses to infection by Gram-negative pathogens. Here, we describe a novel molecular mechanism used by a prevalent human bacterial pathogen to evade and subvert the human innate immune system. We show that the oral pathogen, Porphyromonas gingivalis , uses endogenous lipid A 1- and 4'-phosphatase activities to modify its LPS, creating immunologically silent, non-phosphorylated lipid A. This unique lipid A provides a highly effective mechanism employed by this bacterium to evade TLR4 sensing and to resist killing by cationic antimicrobial peptides. In addition, lipid A 1-phosphatase activity is suppressed by haemin, an important nutrient in the oral cavity. Specifically, P. gingivalis grown in the presence of high haemin produces lipid A that acts as a potent TLR4 antagonist. These results suggest that haemin-dependent regulation of lipid A 1-dephosphorylation can shift P. gingivalis lipid A activity from TLR4 evasive to TLR4 suppressive, potentially altering critical interactions between this bacterium, the local microbial community and the host innate immune system.  相似文献   

8.
9.
This study provides the first report into immunohistochemical localization of Toll-like receptor (TLR) in the canine reproductive tract. TLR4 was investigated in endometrium during the estrous cycle and in pyometra. Pyometra is the most important pathological condition of the uterus due to bacterial infection in dogs. To protect against invading pathogens, the female reproductive tract has evolved immune mechanisms. TLRs are the cellular components of the afferent arm of the innate immune system. The expression of TLR4 was significantly higher in the endometrial stroma compared to the endometrial surface epithelium and glandular epithelium in proestrus. The glandular epithelium and stroma at the diestrous stage expressed TLR4 significantly higher than surface epithelium. Furthermore, when compared to other healthy groups, the glandular epithelium at diestrus also higher expressed TLR4 than other stages. The expression of TLR4 in the surface epithelium was higher in dogs with pyometra compared with all other groups. And, the surface epithelium of dogs suffering from pyometra also expressed TLR4 more intensely than the glandular epithelium. The innate immunity of infected canine endometrium response to bacterial infection is intensely extremely increased by the expression of TLR4. Furthermore, the different levels of TLR4 expression seems related to physiological changes in distinct cell types of endometrium, leukocytes populations, cytokines and sex hormones.  相似文献   

10.
Expression of innate immune genes such as beta-defensins is induced in airway epithelium by bacterial components via activation of NF-kappaB. We show here that live Gram-negative bacteria can similarly stimulate this pathway, resulting in upregulation of the beta-defensin tracheal antimicrobial peptide (TAP) in primary cultures of bovine tracheal epithelial cells (TECs), by a Toll-like receptor 4 (TLR4)-mediated pathway. The Gram-negative airway pathogen Bordetella bronchiseptica possesses a type III secretion system previously suggested to inhibit the nuclear translocation of NF-kappaB in a cell line by immunohistochemistry. We therefore hypothesized that this pathogen might interfere in the innate immune response of the epithelium. Exposure of TECs to wild-type B. bronchiseptica suppressed the activation of NF-kappaB and the subsequent induction of TAP mRNA levels, whereas a type III secretion-defective strain did not. These results suggest a mechanism for bacterial evasion of the innate immune response in the airway, which could allow for the observed persistent colonization of this pathogen.  相似文献   

11.
12.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

13.
Type I IFNs represent a major antimicrobial defense mechanism due to their property of enhancing immune responses by priming both innate and adaptive immune cells. Plasmacytoid dendritic cells (pDC) are the major source of type I IFN in the human body and represent innate immune cells involved in first-line defense against invading pathogens. Although pDC activation has been extensively studied upon stimulation with synthetic TLR ligands, viruses, and intracellular bacteria, there is only scarce information on extracellular bacteria. In this study we show that the triggering of human pDC-derived IFN-alpha secretion by Staphylococcus aureus is independent of TLR2 and specific for coagulase-positive staphylococci. Specificity of the pDC response to S. aureus is independent of the bacterial virulence factors protein A and alpha-toxin but is mediated by Ag-specific IgG and CD32. S. aureus-induced pDC activation can be blocked by inhibitory DNA oligonucleotides and chloroquine, suggesting that engagement of TLR7/9 by bacterial nucleic acids after CD32-mediated uptake of these compounds may play a central role in this process. Altogether, we propose that in marked contrast to nonselective TLR2-dependent activation of most innate immune cells, pDC activation by S. aureus represents an Ag-specific memory response since it requires the presence of class-switched immunoglobulins.  相似文献   

14.
In sites of inflammation or tissue injury, hyaluronic acid (HA), ubiquitous in the extracellular matrix, is broken down into low m.w. HA (LMW-HA) fragments that have been reported to activate immunocompetent cells. We found that LMW-HA induces activation of keratinocytes, which respond by producing beta-defensin 2. This production is mediated by TLR2 and TLR4 activation and involves a c-Fos-mediated, protein kinase C-dependent signaling pathway. LMW-HA-induced activation of keratinocytes seems not to be accompanied by an inflammatory response, because no production of IL-8, TNF-alpha, IL-1beta, or IL-6 was observed. Ex vivo and in vivo treatments of murine skin with LMW-HA showed a release of mouse beta-defensin 2 in all layers of the epidermal compartment. Therefore, the breakdown of extracellular matrix components, for example after injury, stimulates keratinocytes to release beta-defensin 2, which protects cutaneous tissue at a time when it is particularly vulnerable to infection. In addition, our observation might be important to open new perspectives in the development of possible topical products containing LMW-HA to improve the release of beta-defensins by keratinocytes, thus ameliorating the self-defense of the skin for the protection of cutaneous tissue from infection by microorganisms.  相似文献   

15.
Cell-surface Toll-like receptors (TLRs) initiate innate immune responses, such as inducible nitric oxide synthase (iNOS) induction, to microorganisms' surface pathogens. TLR2 and TLR4 play important roles in gastric mucosa infected with Helicobacter pylori (H. pylori), which contains lipopolysaccharide (LPS) as a pathogen. The present study investigates their physiological roles in the innate immune response of gastric epithelial cells to H. pylori-LPS. Changes in the expression of iNOS, TLR2, and TLR4, as well as downstream activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-kappaB), were analyzed in normal mouse gastric mucosal GSM06 cells following stimulation with H. pylori-LPS and interferon-gamma. Specific inhibitors for mitogen-activated protein kinases, NF-kappaB, and small interfering RNA for TLR2 or TLR4 were employed. The immunohistochemistry of TLR2 was examined in human gastric mucosa. H. pylori-LPS stimulation induced TLR2 in GSM06 cells, but TLR4 was unchanged. TLR2 induction resulted from TLR4 signaling that propagated through extracellular signal-related kinase and NF-kappaB activation, as corroborated by the decline in TLR4 expression on small interfering RNA treatment and pretreatment with inhibitors. The induction of iNOS and the associated nitric oxide production in response to H. pylori-LPS stimulation were inhibited by declines in not only TLR4 but also TLR2. Increased expression of TLR2 was identified in H. pylori-infected human gastric mucosa. TLR4 signaling initiated by H. pylori-LPS and propagated via extracellular signal-regulated kinase and NF-kappaB activation induced TLR2 expression in gastric epithelial cells. Induced TLR2 cooperated with TLR4 to amplify iNOS induction. This positive correlation may constitute a mechanism for stimulating the innate immune response against various bacterial pathogens, including H. pylori-LPS.  相似文献   

16.
Mucosal surfaces are the entry sites for the vast majority of infectious pathogens and provide the first line of defense against infection. In addition to the epithelial barrier, the innate immune system plays a key role in recognizing and rapidly responding to invading pathogens via innate receptors, such as Toll-like receptors (TLR). Bacterial CpG DNA, a potent activator of innate immunity, is recognized by TLR9. Here, we confirm that local mucosal, but not systemic, delivery of CpG oligodeoxynucleotides (ODN) to the genital tract protects mice from a subsequent lethal vaginal herpes simplex virus type 2 (HSV-2) challenge. Since these effects were so local in action, we examined the genital mucosa. Local delivery of CpG ODN induced rapid proliferation and thickening of the genital epithelium and caused significant recruitment of inflammatory cells to the submucosa. Local CpG ODN treatment also resulted in inhibition of HSV-2 replication but had no effect on HSV-2 entry into the genital mucosa. CpG ODN-induced protection against HSV-2 was not associated with early increases in gamma interferon (IFN-gamma) secretion in the genital tract, and CpG ODN-treated IFN-gamma(-/-) mice were protected from subsequent challenge with a lethal dose of HSV-2. Treatment of human HEK-293 cells transfected with murine TLR9 showed that the antiviral activity of CpG ODN was mediated through TLR9. These studies suggest that local induction of mucosal innate immunity can provide protection against sexually transmitted infections, such as HSV-2 or possibly human immunodeficiency virus, at the mucosal surfaces.  相似文献   

17.
Several TLR ligands of bacterial origin induce innate immune responses. Although FimH, the adhesin portion of type 1 fimbria, plays an important role in the pathogenicity of some gram-negative bacteria, its ability to stimulate the innate immune system via TLR signaling remains unclear. In this study we report that FimH induces potent innate responses in a MyD88-dependent fashion. The FimH-induced innate activity was restricted to cells expressing TLR4. In addition, FimH was able to bind directly to TLR4. More importantly, cells unresponsive to LPS were responsive to FimH and the presence or absence of MD-2 and CD14 had no effect on FimH activity. Our data suggest that TLR4 is a functional receptor for the adhesin portion of bacterial type 1 fimbria.  相似文献   

18.
19.
Microglial activation is a key feature in Alzheimer's disease and is considered to contribute to progressive neuronal injury by release of neurotoxic products. The innate immune receptor Toll-like-receptor 4 (TLR4), localized on the surface of microglia, is a first-line host defense receptor against invading microorganisms. Here, we show that a spontaneous loss-of-function mutation in the Tlr4 gene strongly inhibits microglial and monocytic activation by aggregated Alzheimer amyloid peptide resulting in a significantly lower release of the inflammatory products IL-6, TNFalpha and nitric oxide. Treatment of primary murine neuronal cells with supernatant of amyloid peptide-stimulated microglia demonstrates that Tlr4 contributes to amyloid peptide-induced microglial neurotoxicity. In addition, stimulation experiments in transfected HEK293 cells allowed to define a tri-molecular receptor complex consisting of TLR4, MD-2 and CD14 necessary for full cellular activation by aggregated amyloid peptide. A clinical relevance of these findings is supported by a marked upregulation of Tlr4 mRNA in APP transgenic mice and by an increased expression of TLR4 in Alzheimer's disease brain tissue associated with amyloid plaque deposition. Together, these observations provide the first evidence for a role of the key innate immune receptor, TLR4, in neuroinflammation in Alzheimer's disease.  相似文献   

20.
Macrophages are essential for the development of innate immune responses against a variety of infectious factors. They detect invading pathogens via their pattern recognition receptors such as toll-like receptors (TLRs). TLR7/8 recognizes ssRNA from various viruses. In the present study, we have used 2-DE gel-based proteomics to find novel TLR7/8 target proteins in human monocyte-derived macrophages in order to improve our understanding of the virus recognition by this TLR. A total of 27 protein spots were found to be reproducibly differentially expressed between control and TLR7/8 activated 2-DE gel pairs, 18 spots being more than two-fold upregulated and nine spots being at least two-fold downregulated. Several proteins involved in defense against toxic superoxide (O2-) and other reactive oxygen species, such as manganese-containing superoxide dismutase (SOD2), glutathione peroxidase, and peroxiredoxins 1 and 6 were highly upregulated after TLR7/8 activation. Western blot analysis showed that activation of macrophages with TLR2, TLR3, TLR4, and TLR7/8 ligands also strongly upregulated SOD2 protein expression. In conclusion, our results show that the activation of pattern recognition receptors of the innate immune system results in strong upregulation of SOD2 gene expression suggesting that SOD2 protects macrophages from oxidative stress during microbial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号