首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanism for transmission of the infectious prions from the peripheral nerve ends to the central nervous system is thought to involve neuronal anterograde and retrograde transport systems. Cytoplasmic dynein is the major retrograde transport molecular motor whose function is impaired in the Legs at odd angles (Loa) mouse due to a point mutation in the cytoplasmic dynein heavy chain subunit. Loa is a dominant trait which causes neurodegeneration and progressive motor function deficit in the heterozygotes. To investigate the role of cytoplasmic dynein in the transmission of prions within neurons, we inoculated heterozygous Loa and wild type littermates with mouse-adapted scrapie prions intracerebrally and intraperitonially, and determined the incubation period to onset of clinical prion disease. Our data indicate that the dynein mutation in the heterozygous state does not affect prion disease incubation time or its neuropathology in Loa mice.  相似文献   

2.
A mechanism for transmission of the infectious prions from the peripheral nerve ends to the central nervous system is thought to involve neuronal anterograde and retrograde transport systems. Cytoplasmic dynein is the major retrograde transport molecular motor whose function is impaired in the Legs at odd angles (Loa) mouse due to a point mutation in the cytoplasmic dynein heavy chain subunit. Loa is a dominant trait which causes neurodegeneration and progressive motor function deficit in the heterozygotes. To investigate the role of cytoplasmic dynein in the transmission of prions within neurons, we inoculated heterozygous Loa and wild type littermates with mouse-adapted scrapie prions intracerebrally and intraperitonially, and determined the incubation period to onset of clinical prion disease. Our data indicate that the dynein mutation in the heterozygous state does not affect prion disease incubation time or its neuropathology in Loa mice.  相似文献   

3.
Disruptions in axonal transport have been implicated in a wide range of neurodegenerative diseases. Cramping 1 (Cra1/+) and Legs at odd angles (Loa/+) mice, with hypomorphic mutations in the dynein heavy chain 1 gene, which encodes the ATPase of the retrograde motor protein dynein, were originally reported to exhibit late onset motor neuron disease. Subsequent, conflicting reports suggested that sensory neuron disease without motor neuron loss underlies the phenotypes of Cra1/+ and Loa/+ mice. Here, we present behavioral and anatomical analyses of Cra1/+ mice. We demonstrate that Cra1/+ mice exhibit early onset, stable behavioral deficits, including abnormal hindlimb posturing and decreased grip strength. These deficits do not progress through 24 months of age. No significant loss of primary motor neurons or dorsal root ganglia sensory neurons was observed at ages where the mice exhibited clear symptomatology. Instead, there is a decrease in complexity of neuromuscular junctions. These results indicate that disruption of dynein function in Cra1/+ mice results in abnormal morphology of neuromuscular junctions. The time course of behavioral deficits, as well as the nature of the morphological defects in neuromuscular junctions, suggests that disruption of dynein function in Cra1/+ mice causes a developmental defect in synapse assembly or stabilization.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by motoneuron degeneration and muscle paralysis. Although the precise pathogenesis of ALS remains unclear, mutations in Cu/Zn superoxide dismutase (SOD1) account for approximately 20-25% of familial ALS cases, and transgenic mice overexpressing human mutant SOD1 develop an ALS-like phenotype. Evidence suggests that defects in axonal transport play an important role in neurodegeneration. In Legs at odd angles (Loa) mice, mutations in the motor protein dynein are associated with axonal transport defects and motoneuron degeneration. Here, we show that retrograde axonal transport defects are already present in motoneurons of SOD1(G93A) mice during embryonic development. Surprisingly, crossing SOD1(G93A) mice with Loa/+ mice delays disease progression and significantly increases life span in Loa/SOD1(G93A) mice. Moreover, there is a complete recovery in axonal transport deficits in motoneurons of these mice, which may be responsible for the amelioration of disease. We propose that impaired axonal transport is a prime cause of neuronal death in neurodegenerative disorders such as ALS.  相似文献   

5.
The molecular motor dynein is regulated by the huntingtin protein, and Huntington's disease (HD) mutations of huntingtin disrupt dynein motor activity. Besides abnormalities in the central nervous system, HD animal models develop prominent peripheral pathology, with defective brown tissue thermogenesis and dysfunctional white adipocytes, but whether this peripheral phenotype is recapitulated by dynein dysfunction is unknown. Here, we observed prominently increased adiposity in mice harboring the legs at odd angles (Loa/+) or the Cramping mutations (Cra/+) in the dynein heavy chain gene. In Cra/+ mice, hyperadiposity occurred in the absence of energy imbalance and was the result of impaired norepinephrine-stimulated lipolysis. A similar phenotype was observed in 3T3L1 adipocytes upon chemical inhibition of dynein showing that loss of functional dynein leads to impairment of lipolysis. Ex vivo, dynein mutant adipose tissue displayed increased reactive oxygen species production that was, at least partially, responsible for the decreased cellular responses to norepinephrine and subsequent defect in stimulated lipolysis. Dynein mutation also affected norepinephrine efficacy to elicit a thermogenic response and led to morphological abnormalities in brown adipose tissue and cold intolerance in dynein mutant mice. Interestingly, protein levels of huntingtin were decreased in dynein mutant adipose tissue. Collectively, our results provide genetic evidence that dynein plays a key role in lipid metabolism and thermogenesis through a modulation of oxidative stress elicited by norepinephrine. This peripheral phenotype of dynein mutant mice is similar to that observed in various animal models of HD, lending further support for a functional link between huntingtin and dynein.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal late-onset neurodegenerative disease. Familial cases of ALS (FALS) constitute ∼10% of all ALS cases, and mutant superoxide dismutase 1 (SOD1) is found in 15–20% of FALS. SOD1 mutations confer a toxic gain of unknown function to the protein that specifically targets the motor neurons in the cortex and the spinal cord. We have previously shown that the autosomal dominant Legs at odd angles (Loa) mutation in cytoplasmic dynein heavy chain (Dync1h1) delays disease onset and extends the life span of transgenic mice harboring human mutant SOD1G93A. In this study we provide evidence that despite the lack of direct interactions between mutant SOD1 and either mutant or wild-type cytoplasmic dynein, the Loa mutation confers significant reductions in the amount of mutant SOD1 protein in the mitochondrial matrix. Moreover, we show that the Loa mutation ameliorates defects in mitochondrial respiration and membrane potential observed in SOD1G93A motor neuron mitochondria. These data suggest that the Loa mutation reduces the vulnerability of mitochondria to the toxic effects of mutant SOD1, leading to improved mitochondrial function in SOD1G93A motor neurons.  相似文献   

7.
A single amino acid change, F580Y (Legs at odd angles (Loa), Dync1h1(Loa)), in the highly conserved and overlapping homodimerization, intermediate chain, and light intermediate chain binding domain of the cytoplasmic dynein heavy chain can cause severe motor and sensory neuron loss in mice. The mechanism by which the Loa mutation impairs the neuron-specific functions of dynein is not understood. To elucidate the underlying molecular mechanisms of neurodegeneration arising from this mutation, we applied a cohort of biochemical methods combined with in vivo assays to systemically study the effects of the mutation on the assembly of dynein and its interaction with dynactin. We found that the Loa mutation in the heavy chain leads to increased affinity of this subunit of cytoplasmic dynein to light intermediate and a population of intermediate chains and a suppressed association of dynactin to dynein. These data suggest that the Loa mutation drives the assembly of cytoplasmic dynein toward a complex with lower affinity to dynactin and thus impairing transport of cargos that tether to the complex via dynactin. In addition, we detected up-regulation of kinesin light chain 1 (KLC1) and its increased association with dynein but reduced microtubule-associated KLC1 in the Loa samples. We provide a model describing how up-regulation of KLC1 and its interaction with cytoplasmic dynein in Loa could play a regulatory role in restoring the retrograde and anterograde transport in the Loa neurons.  相似文献   

8.
The molecular motor dynein is regulated by the huntingtin protein, and Huntington's disease (HD) mutations of huntingtin disrupt dynein motor activity. Besides abnormalities in the central nervous system, HD animal models develop prominent peripheral pathology, with defective brown tissue thermogenesis and dysfunctional white adipocytes, but whether this peripheral phenotype is recapitulated by dynein dysfunction is unknown. Here, we observed prominently increased adiposity in mice harboring the legs at odd angles (Loa/+) or the Cramping mutations (Cra/+) in the dynein heavy chain gene. In Cra/+ mice, hyperadiposity occurred in the absence of energy imbalance and was the result of impaired norepinephrine-stimulated lipolysis. A similar phenotype was observed in 3T3L1 adipocytes upon chemical inhibition of dynein showing that loss of functional dynein leads to impairment of lipolysis. Ex vivo, dynein mutant adipose tissue displayed increased reactive oxygen species production that was, at least partially, responsible for the decreased cellular responses to norepinephrine and subsequent defect in stimulated lipolysis. Dynein mutation also affected norepinephrine efficacy to elicit a thermogenic response and led to morphological abnormalities in brown adipose tissue and cold intolerance in dynein mutant mice. Interestingly, protein levels of huntingtin were decreased in dynein mutant adipose tissue. Collectively, our results provide genetic evidence that dynein plays a key role in lipid metabolism and thermogenesis through a modulation of oxidative stress elicited by norepinephrine. This peripheral phenotype of dynein mutant mice is similar to that observed in various animal models of HD, lending further support for a functional link between huntingtin and dynein.  相似文献   

9.
Cytoplasmic dynein is the most important molecular motor driving the movement of a wide range of cargoes towards the minus ends of microtubules.As a molecular motor protein,dynein performs a variety of basic cellular functions including organelle transport and centrosome assembly.In the nervous system,dynein has been demonstrated to be responsible for axonal retrograde transport.Many studies have revealed direct or indirect evidence of dynein in neurodegenerative diseases such as amyotrophic lateral sclerosis,Charcot-Marie-Tooth disease,Alzheimer’s disease,Parkinson’s disease and Huntington’s disease.Among them,a number of mutant proteins involved in various neurodegenerative diseases interact with dynein.Axonal transport disruption is presented as a common feature occurring in neurodegenerative diseases.Dynein heavy chain mutant mice also show features of neurodegenerative diseases.Moreover,defects of dynein-dependent processes such as autophagy or clearance of aggregation-prone proteins are found in most of these diseases.Lines of evidence have also shown that dynein is associated with neurodevelopmental diseases.In this review,we focus on dynein involvement in different neurological diseases and discuss potential underlying mechanisms.  相似文献   

10.

Background

In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs.

Methodology/Principal Findings

We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous GarsC201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the GarsC201R/+ mice to two other mutants: the TgSOD1G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1Loa) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1Loa/+;GarsC201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the GarsC201R mutation significantly delayed disease onset in the SOD1G93A;GarsC201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated.

Conclusions/Significance

These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.  相似文献   

11.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper–zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein–dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.  相似文献   

12.
The motor protein dynein is predicted to move the tail domain, a slender rod-like structure, relative to the catalytic head domain to carry out its power stroke. Here, we investigated ATP hydrolysis cycle-dependent conformational dynamics of dynein using fluorescence resonance energy transfer analysis of the dynein motor domain labeled with two fluorescent proteins. We show that dynein adopts at least two conformational states (states I and II), and the tail undergoes ATP-induced motions relative to the head domain during transitions between the two states. Our measurements also suggest that in the course of the ATP hydrolysis cycle of dynein, the tail motion from state I to state II takes place in the ATP-bound state, whereas the motion from state II to state I occurs in the ADP-bound state. The latter tail motion may correspond to the predicted power stroke of dynein.  相似文献   

13.
Cytoplasmic dynein has been implicated in diverse mitotic functions, several involving its association with kinetochores. Much of the supporting evidence comes from inhibition of dynein regulatory factors. To obtain direct insight into kinetochore dynein function, we expressed a series of dynein tail fragments, which we find displace motor-containing dynein heavy chain (HC) from kinetochores without affecting other subunits, regulatory factors, or microtubule binding proteins. Cells with bipolar mitotic spindles progress to late prometaphase-metaphase at normal rates. However, the dynein tail, dynactin, Mad1, and BubR1 persist at the aligned kinetochores, which is consistent with a role for dynein in self-removal and spindle assembly checkpoint inactivation. Kinetochore pairs also show evidence of misorientation relative to the spindle equator and abnormal oscillatory behavior. Further, kinetochore microtubule bundles are severely destabilized at reduced temperatures. Dynein HC RNAi and injection of anti-dynein antibody in MG132-arrested metaphase cells produced similar effects. These results identify a novel function for the dynein motor in stable microtubule attachment and maintenance of kinetochore orientation during metaphase chromosome alignment.  相似文献   

14.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

15.
Cytoplasmic dynein is an approximately 1.4 MDa multi‐protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein‐associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N‐terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single‐molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long‐distance motor movement.  相似文献   

16.
The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.  相似文献   

17.
Cytoplasmic dynein drives vesicular transport from the periphery to the cell body of neurons. Missense mutations in the dynein tail domain cause neurodegenerative disease in mouse models. new data on the effect of one such dynein mutation provide insight into the intramolecular communication and flexible stepping of this essential cellular motor.  相似文献   

18.
Cytoplasmic dynein mediates spindle orientation from the cell cortex through interactions with astral microtubules, but neither the mechanism governing its cortical targeting nor the regulation thereof is well understood. Here we show that yeast dynein offloads from microtubule plus ends to the daughter cell cortex. Mutants with an engineered peptide inserted between the tail domain and the motor head retain wild-type motor activity but exhibit enhanced offloading and cortical targeting. Conversely, shortening the "neck" sequence between the tail and motor domains precludes offloading from the microtubule plus ends. Furthermore, chimeric mutants with mammalian dynein "neck" sequences rescue targeting and function. These findings provide direct support for an active microtubule-mediated delivery process that appears to be regulated by a conserved masking/unmasking mechanism.  相似文献   

19.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

20.
An important consequence of protein misfolding related to neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the formation of proteinaceous inclusions or aggregates within the central nervous system. We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interact and co-localize with the dynein-dynactin complex in cultured cells and affected tissues of ALS mice. In this study, we report that the interaction between mutant SOD1 and the dynein motor plays a critical role in the formation of large inclusions containing mutant SOD1. Disruption of the motor by overexpression of the p50 subunit of dynactin in neuronal and non-neuronal cell cultures abolished the association between aggregation-prone SOD1 mutants and the dynein-dynactin complex. The p50 overexpression also prevented mutant SOD1 inclusion formation and improved the survival of cells expressing A4V SOD1. Furthermore, we observed that two ALS-linked SOD1 mutants, H46R and H48Q, which showed a lower propensity to interact with the dynein motor, also produced less aggregation and fewer large inclusions. Overall, these data suggest that formation of large inclusions depends upon association of the abnormal SOD1s with the dynein motor. Whether the misfolded SOD1s directly perturb axonal transport or impair other functional properties of the dynein motor, this interaction could propagate a toxic effect that ultimately causes motor neuron death in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号