首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytoplasmic dynein supports long-range intracellular movements of cargo in vivo but does not appear to be a processive motor protein by itself. We show here that the dynein activator, dynactin, binds microtubules and increases the average length of cytoplasmic-dynein-driven movements without affecting the velocity or microtubule-stimulated ATPase kinetics of cytoplasmic dynein. Enhancement of microtubule binding and motility by dynactin are both inhibited by an antibody to dynactin's microtubule-binding domain. These results indicate that dynactin acts as a processivity factor for cytoplasmic-dynein-based motility and provide the first evidence that cytoskeletal motor processivity can be affected by extrinsic factors.  相似文献   

2.
Wang Z  Sheetz MP 《Biophysical journal》2000,78(4):1955-1964
In motor movement on microtubules, the anionic C-terminal of tubulin has been implicated as a significant factor. Our digital analyses of movements of cytoplasmic dynein- and kinesin-coated beads on microtubules have revealed dramatic changes when the C-terminal region (2-4-kDa fragment) of tubulin was cleaved by limited subtilisin digestion of assembled microtubules. For both motors, bead binding to microtubules was decreased threefold, bead run length was decreased over fourfold, and there was a dramatic 20-fold decrease in diffusional movements of cytoplasmic dynein beads on microtubules (even with low motor concentrations where the level of bead motile activity was linear with motor concentration). The velocity of active bead movements on microtubules was unchanged for cytoplasmic dynein and slightly decreased for kinesin. There was also a decrease in the frequency of bead movements without a change in velocity when the ionic strength was raised. However, with high ionic strength there was not a decrease in run length or any selective inhibition of the diffusional movement. The C-terminal region of tubulin increased motor run length (processivity) by inhibiting "detachment" but without affecting velocity. Because the major motor binding sites of microtubules are not on the C-terminal tail of tubulin (), we suggest that the changes are the result of the compromise of a weakly attached state that is the lowest affinity step in both motors' ATPase cycles and is not rate limiting.  相似文献   

3.
Numata N  Shima T  Ohkura R  Kon T  Sutoh K 《FEBS letters》2011,585(8):1185-1190
We examined the functional roles of C-sequence, a 47-kDa non-AAA+ module at the C-terminal end of the 380-kDa Dictyostelium dynein motor domain. When the distal segment of the C-sequence was deleted from the motor domain, the single-molecule processivity of the dimerized motor domain was selectively impaired without its ensemble motile ability and ATPase activity being severely affected. When the hinge-like sequence between the distal and proximal C-sequence segments was made more or less flexible, the dimeric motor showed lower or higher processivity, respectively. These results suggest a potential function of the distal C-sequence segment as a modulator of processivity.  相似文献   

4.
The motor protein dynein is predicted to move the tail domain, a slender rod-like structure, relative to the catalytic head domain to carry out its power stroke. Here, we investigated ATP hydrolysis cycle-dependent conformational dynamics of dynein using fluorescence resonance energy transfer analysis of the dynein motor domain labeled with two fluorescent proteins. We show that dynein adopts at least two conformational states (states I and II), and the tail undergoes ATP-induced motions relative to the head domain during transitions between the two states. Our measurements also suggest that in the course of the ATP hydrolysis cycle of dynein, the tail motion from state I to state II takes place in the ATP-bound state, whereas the motion from state II to state I occurs in the ADP-bound state. The latter tail motion may correspond to the predicted power stroke of dynein.  相似文献   

5.
The heavy chain of cytoplasmic dynein contains four nucleotide-binding domains referred to as AAA1-AAA4, with the first domain (AAA1) being the main ATP hydrolytic site. Although previous studies have proposed regulatory roles for AAA3 and AAA4, the role of ATP hydrolysis at these sites remains elusive. Here, we have analyzed the single molecule motility properties of yeast cytoplasmic dynein mutants bearing mutations that prevent ATP hydrolysis at AAA3 or AAA4. Both mutants remain processive, but the AAA4 mutant exhibits a surprising increase in processivity due to its tighter affinity for microtubules. In addition to changes in motility characteristics, AAA3 and AAA4 mutants produce less maximal force than wild-type dynein. These results indicate that the nucleotide binding state at AAA3 and AAA4 can allosterically modulate microtubule binding affinity and affect dynein processivity and force production.  相似文献   

6.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

7.
Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.  相似文献   

8.
Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron.  相似文献   

9.
Cytoplasmic dynein and kinesin I are both unidirectional intracellular motors. Dynein moves cargo toward the cell center, and kinesin moves cargo toward the cell periphery. There is growing evidence that bi-directional motility is regulated in the cell, potentially through direct interactions between oppositely oriented motors. We have identified a direct interaction between cytoplasmic dynein and kinesin I. Using the yeast two-hybrid assay and affinity chromatography, we demonstrate that the intermediate chain of dynein binds to kinesin light chains 1 and 2. The interaction is both direct and specific. Co-immunoprecipitation experiments demonstrate an interaction between endogenous proteins in rat brain cytosol. Double-label immunocytochemistry reveals a partial co-localization of vesicle-associated motor proteins. Together these observations suggest that soluble motors can interact, potentially allowing kinesin I to actively localize dynein to cellular sites of function. There is also a vesicle population with both dynein and kinesin I bound that may be capable of bi-directional motility along cellular microtubules.  相似文献   

10.
A W Tai  J Z Chuang  C Bode  U Wolfrum  C H Sung 《Cell》1999,97(7):877-887
The interaction of cytoplasmic dynein with its cargoes is thought to be indirectly mediated by dynactin, a complex that binds to the dynein intermediate chain. However, the roles of other dynein subunits in cargo binding have been unknown. Here we demonstrate that dynein translocates rhodopsin-bearing vesicles along microtubules. This interaction occurs directly between the C-terminal cytoplasmic tail of rhodopsin and Tctex-1, a dynein light chain. C-terminal rhodopsin mutations responsible for retinitis pigmentosa inhibit this interaction. Our results point to an alternative docking mechanism for cytoplasmic dynein, provide novel insights into the role of motor proteins in the polarized transport of post-Golgi vesicles, and shed light on the molecular basis of retinitis pigmentosa.  相似文献   

11.
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.  相似文献   

12.
According to the power stroke model of dynein deduced from electron microscopic and fluorescence resonance energy transfer studies, the power stroke and the recovery stroke are expected to take place at the two isomerization steps of the ATPase cycle at the primary ATPase site. Here, we have conducted presteady-state kinetic analyses of these two isomerization steps with the single-headed motor domain of Dictyostelium cytoplasmic dynein by employing fluorescence resonance energy transfer to probe ATPase steps at the primary site and tail positions. Our results show that the recovery stroke at the first isomerization step proceeds quickly ( approximately 180 s(-1)), whereas the power stroke at the second isomerization step is very slow ( approximately 0.2 s(-1)) in the absence of microtubules, and that the presence of microtubules accelerates the second but not the first step. Moreover, a comparison of the microtubule-induced acceleration of the power stroke step and that of steady-state ATP hydrolysis implies the intriguing possibility that microtubules simultaneously accelerate the ATPase activity not only at the primary site but also at other site(s) in the motor domain.  相似文献   

13.
Microtubule-associated proteins (MAPs) use particular microtubule-binding domains that allow them to interact with microtubules in a manner specific to their individual cellular functions. Here, we have identified a highly basic microtubule-binding domain in the p150 subunit of dynactin that is only present in the dynactin members of the CAP-Gly family of proteins. Using single-particle microtubule-binding assays, we found that the basic domain of dynactin moves progressively along microtubules in the absence of molecular motors - a process we term 'skating'. In contrast, the previously described CAP-Gly domain of dynactin remains firmly attached to a single point on microtubules. Further analyses showed that microtubule skating is a form of one-dimensional diffusion along the microtubule. To determine the cellular function of the skating phenomenon, dynein and the dynactin microtubule-binding domains were examined in single-molecule motility assays. We found that the basic domain increased dynein processivity fourfold whereas the CAP-Gly domain inhibited dynein motility. Our data show that the ability of the basic domain of dynactin to skate along microtubules is used by dynein to maintain longer interactions for each encounter with microtubules.  相似文献   

14.
Cytoplasmic dynein is a force-transducing ATPase that powers the movement of cellular cargoes along microtubules. Two identical heavy chain polypeptides (> 500 kDa) of the cytoplasmic dynein complex contain motor domains that possess the ATPase and microtubule-binding activities required for force production [1]. It is of great interest to determine whether both heavy chains (DHCs) in the dynein complex are required for progression of the mechanochemical cycle and motility, as observed for other dimeric motors. We have used transgenic constructs to investigate cooperative interactions between the two motor domains of the Drosophila cytoplasmic dynein complex. We show that 138 kDa and 180 kDa amino-terminal fragments of DHC can assemble with full-length DHC to form heterodimeric complexes containing only a single motor domain. The single-headed dynein complexes can bind and hydrolyze ATP, yet do not show the ATP-induced detachment from microtubules that is characteristic of wild-type homodimeric dynein. These results suggest that cooperative interactions between the monomeric units of the dimer are required for efficient ATP-induced detachment of dynein and unidirectional movement along the microtubule.  相似文献   

15.
A single amino acid change, F580Y (Legs at odd angles (Loa), Dync1h1(Loa)), in the highly conserved and overlapping homodimerization, intermediate chain, and light intermediate chain binding domain of the cytoplasmic dynein heavy chain can cause severe motor and sensory neuron loss in mice. The mechanism by which the Loa mutation impairs the neuron-specific functions of dynein is not understood. To elucidate the underlying molecular mechanisms of neurodegeneration arising from this mutation, we applied a cohort of biochemical methods combined with in vivo assays to systemically study the effects of the mutation on the assembly of dynein and its interaction with dynactin. We found that the Loa mutation in the heavy chain leads to increased affinity of this subunit of cytoplasmic dynein to light intermediate and a population of intermediate chains and a suppressed association of dynactin to dynein. These data suggest that the Loa mutation drives the assembly of cytoplasmic dynein toward a complex with lower affinity to dynactin and thus impairing transport of cargos that tether to the complex via dynactin. In addition, we detected up-regulation of kinesin light chain 1 (KLC1) and its increased association with dynein but reduced microtubule-associated KLC1 in the Loa samples. We provide a model describing how up-regulation of KLC1 and its interaction with cytoplasmic dynein in Loa could play a regulatory role in restoring the retrograde and anterograde transport in the Loa neurons.  相似文献   

16.
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.  相似文献   

17.
Dyneins form one of the three major families of cytoskeleton-based motor proteins that together drive most of the visible forms of cell and organelle movement. We present here a 3D reconstruction of a cytoplasmic dynein motor domain obtained by electron microscopy, at 25 Angstrom resolution. This work demonstrates a basic motor architecture of a flat, slightly elliptical ring composed of seven densities arranged around a partially enclosed central cavity. We have used specific Fab tags to localize the microtubule-binding domain; the connecting stalk emerges at one end of the motor's long axis. Through proposed fitting of representative AAA domain structures, we show that the nucleotide catalytic P-1 domain is likely located at the opposite end of the motor. Thus mechanisms that couple nucleotide hydrolysis with microtubule binding must be propagated around a ring structure, in a manner clearly distinct from kinesin or myosin-mediated movements. Analysis of the Fab tagged datasets reveals classes of particles with stalks protruding at distinct angles from the motor. There is a approximately 40 degrees variation in microtubule-binding stalk angle that may reflect linkage to dynein's mechanochemical cycle. Overall, the work provides sufficient resolution to begin the mapping of landmark features onto a dynein motor, and provides a foundation for understanding the mechanics of dynein movement.  相似文献   

18.
The dynein microtubule motor   总被引:21,自引:0,他引:21  
Dyneins are large multi-component microtubule-based molecular motors involved in many fundamental cellular processes including vesicular transport, mitosis and ciliary/flagellar beating. In order to achieve useful work, these enzymes must contain motor, cargo-binding and regulatory components. The ATPase and microtubule motor domains are located within the very large dynein heavy chains that form the globular heads and stems of the complex. Cargo-binding activity involves the intermediate chains and several classes of light chain that associate in a subcomplex at the base of the soluble dynein particle. Regulatory control of dynein motor function is thought to involve the phosphorylation of various components as well as a series of light chain proteins that are directly associated with the heavy chains. These latter polypeptides have a variety of intriguing attributes, including redox-sensitive vicinal dithiols and Ca(2+)-binding, suggesting that the activity of individual dyneins may be subject to multiple regulatory inputs. Recent molecular, genetic and structural studies have revealed insight into the roles played by these various components and the mechanisms of dynein-based motility.  相似文献   

19.
Cytoplasmic dynein play an important role in transporting various intracellular cargos by coupling their ATP hydrolysis cycle with their conformational changes. Recent experimental results showed that the cytoplasmic dynein had a highly variable stepping pattern including “hand-over-hand”, “inchworm” and “nonalternating-inchworm”. Here, we developed a model to describe the coordinated stepping patterns of cytoplasmic dynein, based on its working cycle, construction and the interaction between its leading head and tailing head. The kinetic model showed how change in the distance between the two heads influences the rate of cytoplasmic dynein under different stepping patterns. Numerical simulations of the distribution of step size and striding rate are in good quantitative agreement with experimental observations. Hence, our coordinated stepping model for cytoplasmic dynein successfully explained its diverse stepping patterns as a molecular motor. The cooperative mechanism carried out by the two heads of cytoplasmic dynein shed light on the strategies adopted by the cytoplasmic dynein in executing various functions.  相似文献   

20.
Force-induced bidirectional stepping of cytoplasmic dynein   总被引:4,自引:0,他引:4  
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein, and the motor walks backward toward the microtubule plus end at loads above its stall force of 7 pN. Remarkably, in the absence of ATP, dynein steps processively along microtubules under an external load, with less force required for minus-end- than for plus-end-directed movement. This nucleotide-independent walking reveals that force alone can drive repetitive microtubule detachment-attachment cycles of dynein's motor domains. These results suggest a model for how dynein's two motor domains coordinate their activities during normal processive motility and provide new clues for understanding dynein-based motility in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号