首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Star-PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P(2)), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P(2) sensitive CKI isoform, CKIα associates with and phosphorylates Star-PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star-PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P(2). CKI activity was required for the expression and efficient 3'-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star-PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star-PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star-PAP targets. We show that in addition to CKIα, Star-PAP associates with another CKI isoform, CKIε in the Star-PAP complex that phosphorylates Star-PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3'-end processing of Star-PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star-PAP activity and regulates Star-PAP target messages.  相似文献   

2.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

3.
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.  相似文献   

4.
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3′-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.  相似文献   

5.
6.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage. Received: 6 June 1997 / Accepted: 5 November 1997  相似文献   

7.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage.  相似文献   

8.
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be essential for polyadenylation. Here, we demonstrate that Yth1p is also required for the cleavage reaction and that two protein domains have distinct roles in 3'-end processing. The C-terminal part is required in polyadenylation to tether Fip1p and poly(A) polymerase to the rest of CPF. A single point mutation in the highly conserved second zinc finger impairs both cleavage and polyadenylation, and affects the ability of Yth1p to interact with the pre-mRNA and other CPF subunits. Finally, we find that Yth1p binds to CYC1 pre-mRNA in the vicinity of the cleavage site. Our results indicate that Yth1p is important for the integrity of CPF and participates in the recognition of the cleavage site.  相似文献   

9.
Animal replication-dependent histone pre-mRNAs are processed at the 3′ end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes—one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.  相似文献   

10.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

11.
12.
We have partially purified a poly(A) polymerase (PAP) from HeLa cell nuclear extract which is involved in the 3'-end formation of polyadenylated mRNA. PAP had a molecular weight of approximately 50 to 60 kilodaltons. In the presence of manganese ions, PAP was able to polyadenylate RNA nonspecifically. However, in the presence of magnesium ions PAP required the addition of a cleavage and polyadenylation factor to specifically polyadenylate pre-mRNAs that contain an intact AAUAAA sequence and end at the poly(A) addition site (precleaved RNA substrates). The purified fraction containing PAP was also required in combination with a cleavage and polyadenylation factor and a cleavage factor for the correct cleavage at the poly(A) site of pre-mRNAs. Since the two activities of the PAP fractions, PAP and cleavage activity, could not be separated by extensive purification, we concluded that the two activities are contained in a single component, a PAP that is also required for the specific cleavage preceding the polyadenylation of pre-mRNA.  相似文献   

13.
Formation of the mature 3' ends of the vast majority of cellular mRNAs occurs through cleavage and polyadenylation and requires a cleavage and polyadenylation specificity factor (CPSF) containing, among other proteins, CPSF-73 and CPSF-100. These two proteins belong to a superfamily of zinc-dependent beta-lactamase fold proteins with catalytic specificity for a wide range of substrates including nucleic acids. CPSF-73 contains a zinc-binding histidine motif involved in catalysis in other members of the beta-lactamase superfamily, whereas CPSF-100 has substitutions within the histidine motif and thus is unlikely to be catalytically active. Here we describe two previously unknown human proteins, designated RC-68 and RC-74, which are related to CPSF-73 and CPSF-100 and which form a complex in HeLa and mouse cells. RC-68 contains the intact histidine motif, and hence it might be a functional counterpart of CPSF-73, whereas RC-74 lacks this motif, thus resembling CPSF-100. In HeLa cells RC-68 is present in both the cytoplasm and the nucleus whereas RC-74 is exclusively nuclear. RC-74 does not interact with CPSF-73, and neither RC-68 nor RC-74 is found in a complex with CPSF-160, indicating that these two proteins form a separate entity independent of the CPSF complex and are likely involved in a pre-mRNA processing event other than cleavage and polyadenylation of the vast majority of cellular pre-mRNAs. RNA interference-mediated depletion of RC-68 arrests HeLa cells early in G(1) phase, but surprisingly the arrested cells continue growing and reach the size typical of G(2) cells. RC-68 is highly conserved from plants to humans and may function in conjunction with RC-74 in the 3' end processing of a distinct subset of cellular pre-mRNAs encoding proteins required for G(1) progression and entry into S phase.  相似文献   

14.
15.
16.
17.
Regulated mRNA translation is a hallmark of oocytes and early embryos, of which cytoplasmic polyadenylation is a major mechanism. This process involves multiple protein components, including the CPSF (cleavage and polyadenylation specificity factor), which is also required for nuclear polyadenylation. The CstF (cleavage stimulatory factor), with CPSF, is required for the pre-mRNA cleavage before nuclear polyadenylation. However, some evidence suggests that the CstF-77 subunit might have a function independent of nuclear polyadenylation, which could be related to the cell cycle. As such, we addressed the question whether CstF-77 might have a role in cytoplasmic polyadenylation. We investigated the function of the CstF-77 protein in Xenopus oocytes, and show that CstF-77 has indeed a role in the cytoplasm. The Xenopus CstF-77 protein (X77K) localizes mainly to the nucleus, but also in punctuate cytoplasmic foci. We show that X77K resides in a cytoplasmic complex with eIF4E, CPEB (cytoplasmic polyadenylation element-binding protein), CPSF-100 and XGLD2, but is not required for cytoplasmic polyadenylation per se. Impairment of X77K function in ovo leads to an acceleration of the G(2)/M transition, with a premature synthesis of Mos and AuroraA proteins. However, the kinetic of Mos mRNA polyadenylation is not modified. Furthermore, X77K represses mRNA translation in vitro. These results suggest that X77K could be involved in masking of mRNA prior to polyadenylation.  相似文献   

18.
19.
20.
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号