首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence.  相似文献   

2.
Extracellular matrices in vivo are heterogeneous structures containing gaps that cells bridge with an actomyosin network. To understand the basis of bridging, we plated cells on surfaces patterned with fibronectin (FN)‐coated stripes separated by non‐adhesive regions. Bridges developed large tensions where concave cell edges were anchored to FN by adhesion sites. Actomyosin complexes assembled near those sites (both actin and myosin filaments) and moved towards the centre of the non‐adhesive regions in a treadmilling network. Inhibition of myosin‐II (MII) or Rho‐kinase collapsed bridges, whereas extension continued over adhesive areas. Inhibition of actin polymerization (latrunculin‐A, jasplakinolide) also collapsed the actomyosin network. We suggest that MII has distinct functions at different bridge regions: (1) at the concave edges of bridges, MIIA force stimulates actin filament assembly at adhesions and (2) in the body of bridges, myosin cross‐links actin filaments and stimulates actomyosin network healing when breaks occur. Both activities ensure turnover of actin networks needed to maintain stable bridges from one adhesive region to another.  相似文献   

3.
Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change--cell extension along the anterior-posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.  相似文献   

4.
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

5.
Julie Gates 《Fly》2012,6(4):213-227
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

6.
The dramatic ingression of tissue sheets that accompanies many morphogenetic processes, most notably gastrulation, has been largely attributed to contractile circum-apical actomyosin 'purse-strings' in the infolding cells. Recent studies, however, including one in BMC Biology, expose mechanisms that rely less on actomyosin contractility of purse-string bundles and more on dynamics in the global cortical actomyosin network of the cells. These studies illustrate how punctuated actomyosin contractions and flow of these networks can remodel both epithelial and planarly organized mesenchymal sheets.  相似文献   

7.
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.  相似文献   

8.
Gupton SL  Waterman-Storer CM 《Cell》2006,125(7):1361-1374
Cells exhibit a biphasic migration-velocity response to increasing adhesion strength, with fast migration occurring at intermediate extracellular matrix (ECM) concentration and slow migration occurring at low and high ECM concentration. A simple mechanical model has been proposed to explain this observation, in which too little adhesion does not provide sufficient traction whereas too much adhesion renders cells immobile. Here we characterize a phenotype for rapid cell migration, which in contrast to the previous model reveals a complex interdependence of subcellular systems that mediates optimal cell migration in response to increasing adhesion strength. The organization and activity of actin, myosin II, and focal adhesions (FAs) are spatially and temporally highly variable and do not exhibit a simple correlation with optimal motility rates. Furthermore, we can recapitulate rapid migration at a nonoptimal ECM concentration by manipulating myosin II activity. Thus, the interplay between actomyosin and FA dynamics results in a specific balance between adhesion and contraction, which induces maximal migration velocity.  相似文献   

9.
Epithelial wound healing relies on tissue movements and cell shape changes. Our work shows that, immediately after wounding, there was a dramatic cytoskeleton remodeling consisting of a pulse of actomyosin filaments that assembled in cells around the wound edge and flowed from cell to cell toward the margin of the wound. We show that this actomyosin flow was regulated by Diaphanous and ROCK and that it elicited a wave of apical cell constriction that culminated in the formation of the leading edge actomyosin cable, a structure that is essential for wound closure. Calcium signaling played an important role in this process, as its intracellular concentration increased dramatically immediately after wounding, and down-regulation of transient receptor potential channel M, a stress-activated calcium channel, also impaired the actomyosin flow. Lowering the activity of Gelsolin, a known calcium-activated actin filament–severing protein, also impaired the wound response, indicating that cleaving the existing actin filament network is an important part of the cytoskeleton remodeling process.  相似文献   

10.
11.
Cross-linking of muscle actin filaments by low concentrations of actin-binding protein reduces the concentration of muscle myosin required for contraction of actin. Gelsolin, a macrophage protein that divides actin filaments in the presence of calcium, inhibits the amplifying effect of actin-binding protein on contraction of actomyosin. In a calcium gradient, the actomyosin gel moves from high to low calcium concentrations, indicating that calcium-controlled lattice formation can impart directionality to the movement of an isotropic actin network.  相似文献   

12.
Myosin head modified with p-chloromercuribenzoate (CMB) forms rigor-like complex with actin in the presence of ATP. Actomyosins with CMB-modified myosin were reconstituted to study the effect of rigor-like complexes on superprecipitation. As native myosin was increasingly replaced by CMB-modified myosin, superprecipitation of the actomyosin was strongly suppressed. Further, the suppression of superprecipitation occurred in a different fashion depending on how CMB-modified myosin was incorporated in myosin filaments of the reconstituted actomyosin. The present results indicate that superprecipitation requires the dissociation of actin and myosin head to take place (i.e., the presence of molecular rearrangements of actomyosin network), and further suggest that superprecipitation is associated with dynamic rearrangements of actomyosin network along myosin filaments.  相似文献   

13.
Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility.  相似文献   

14.
Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation.  相似文献   

15.
Migration of crawling cells (amoebae and some kinds of the tissue cells) is a process related to the dynamic reorganization of actomyosin cytoskeleton. That reorganization engages actin polymerization and de-polymerization, branching of actin network and interaction of myosin II with actin filaments. All those cytoskeleton changes lead to the cell progression, contraction and shifting of the uropod and the cell adhesion. Numerous external stimuli, which activate various surface receptors and signal transduction pathways, can promote migration. Rho family proteins play an important role in the regulation of actin cytoskeleton organization. The most known members of this family are Rho, Rac and Cdc42 proteins, present in all mammalian tissue cells. These proteins control three different stages of cell migration: progression of the frontal edge, adhesion which stabilizes the frontal area, and de-adhesion and shifting of the uropod. Cdc42 and Rac control cell polarization, lamellipodium formation and expansion, organization of focal complexes. Rho protein regulates contractile activity of actomyosin cytoskeleton outside the frontal area, and thus contraction and de-adhesion of the uropod.  相似文献   

16.
Previous studies have suggested that the actin-based centripetal flow process in sea urchin coelomocytes is the result of a two-part mechanism, actin polymerization at the cell edge coupled with actomyosin contraction at the cell center. In the present study, we have extended the testing of this two-part model by attempting to stimulate actomyosin contraction via treatment of coelomocytes with the phosphatase inhibitor Calyculin A (CalyA). The effects of this drug were studied using digitally-enhanced video microscopy of living cells combined with immunofluorescent localization and scanning electron microscopy. Under the influence of CalyA, the coelomocyte actin cytoskeleton undergoes a radical reorganization from a dense network to one displaying an array of tangential arcs and radial rivulets in which actin and the Arp2/3 complex concentrate. In addition, the structure and dynamics of the cell center are transformed due to the accumulation of actin and membrane in this region and the constriction of the central actomyosin ring. Physiological evidence of an increase in actomyosin-based contractility following CalyA treatment was demonstrated in experiments in which cells generated tears in their cell centers in response to the drug. Western blotting and immunofluorescent localization with antibodies against the phosphorylated form of the myosin regulatory light chain (MRLC) suggested that the demonstrated constriction of actomyosin distribution was the result of CalyA-induced phosphorylation of MRLC. Overall, the results suggest that there is significant cross talk between the two underlying mechanisms of actin polymerization and actomyosin contraction, and indicate that changes in actomyosin tension may be translated into alterations in the structural organization of the actin cytoskeleton.  相似文献   

17.
Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca(2+) signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca(2+) signaling.  相似文献   

18.
Myosin II motors embedded within the actin cortex generate contractile forces to modulate cell shape in essential behaviors, including polarization, migration, and division. In sarcomeres, myosin II–mediated sliding of antiparallel F-actin is tightly coupled to myofibril contraction. By contrast, cortical F-actin is highly disordered in polarity, orientation, and length. How the disordered nature of the actin cortex affects actin and myosin movements and resultant contraction is unknown. Here we reconstitute a model cortex in vitro to monitor the relative movements of actin and myosin under conditions that promote or abrogate network contraction. In weakly contractile networks, myosin can translocate large distances across stationary F-actin. By contrast, the extent of relative actomyosin sliding is attenuated during contraction. Thus actomyosin sliding efficiently drives contraction in actomyosin networks despite the high degree of disorder. These results are consistent with the nominal degree of relative actomyosin movement observed in actomyosin assemblies in nonmuscle cells.  相似文献   

19.
Cell elongation is a fundamental process that allows cells and tissues to adopt new shapes and functions. During notochord tubulogenesis in the ascidian Ciona intestinalis, a dramatic elongation of individual cells takes place that lengthens the notochord and, consequently, the entire embryo. We find a novel dynamic actin- and non-muscle myosin II-containing constriction midway along the anteroposterior aspect of each notochord cell during this process. Both actin polymerization and myosin II activity are required for the constriction and cell elongation. Discontinuous localization of myosin II in the constriction indicates that the actomyosin network produces local contractions along the circumference. This reveals basal constriction by the actomyosin network as a novel mechanism for cell elongation. Following elongation, the notochord cells undergo a mesenchymal-epithelial transition and form two apical domains at opposite ends. Extracellular lumens then form at the apical surfaces. We show that cortical actin and Ciona ezrin/radixin/moesin (ERM) are essential for lumen formation and that a polarized network of microtubules, which contributes to lumen development, forms in an actin-dependent manner at the apical cortex. Later in notochord tubulogenesis, when notochord cells initiate a bi-directional crawling movement on the notochordal sheath, the microtubule network rotates 90° and becomes organized as parallel bundles extending towards the leading edges of tractive lamellipodia. This process is required for the correct organization of actin-based protrusions and subsequent lumen coalescence. In summary, we establish the contribution of the actomyosin and microtubule networks to notochord tubulogenesis and reveal extensive crosstalk and regulation between these two cytoskeleton components.  相似文献   

20.
The regulation of cellular traction forces on the extracellular matrix is critical to cell adhesion, migration, proliferation, and differentiation. Diverse lamellar actin organizations ranging from contractile lamellar networks to stress fibers are observed in adherent cells. Although lamellar organization is thought to reflect the extent of cellular force generation, understanding of the physical behaviors of the lamellar actin cytoskeleton is lacking. To elucidate these properties, we visualized the actomyosin dynamics and organization in U2OS cells over a broad range of forces. At low forces, contractile lamellar networks predominate and force generation is strongly correlated to actomyosin retrograde flow dynamics with nominal change in organization. Lamellar networks build ~60% of cellular tension over rapid time scales. At high forces, reorganization of the lamellar network into stress fibers results in moderate changes in cellular tension over slower time scales. As stress fibers build and tension increases, myosin band spacing decreases and α-actinin bands form. On soft matrices, force generation by lamellar networks is unaffected, whereas tension-dependent stress fiber assembly is abrogated. These data elucidate the dynamic and structural signatures of the actomyosin cytoskeleton at different levels of tension and set a foundation for quantitative models of cell and tissue mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号