首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal denaturation of streptokinase from Streptococcus equisimilis (SK) together with that of a set of fragments encompassing each of its three domains has been investigated using differential scanning calorimetry (DSC). Analysis of the effects of pH, sample concentration and heating rates on the DSC thermograms has allowed us to find conditions where thermal unfolding occurs unequivocally under equilibrium. Under these conditions, pH 7.0 and a sample concentration of less than approximately 1.5 mg x mL(-1), or pH 8.0, the heat capacity curves of intact SK can be quantitatively described by three independent two-state transitions, each of which compares well with the two-state transition observed for the corresponding isolated SK domain. The results indicate that each structural domain of SK behaves as a single cooperative unfolding unit under equilibrium conditions. At pH 7.0 and high sample concentration, or at pH 6.0 at any concentration investigated, the thermal unfolding of domain A was accompanied by the time-dependent formation of aggregates of SK. This produces a severe deformation of the DSC curves, which become concentration dependent and kinetically controlled, and thus precludes their proper analysis by standard deconvolution methods. A simple model involving time-dependent, high-order aggregation may account for the observed effects. Limited-proteolysis experiments suggest that in the aggregates the N-terminal segment 1-63 and the whole of SK domain C are at least partially structured, while domain B is highly unstructured. Unfolding of domain A, under conditions where the N-terminal segment 1-63 has a high propensity for beta sheet structure and a partially formed hydrophobic core, gives rise to rapid aggregation. It is likely that this region is able to act as a nucleus for the aggregation of the full-length protein.  相似文献   

2.
The contrasting roles of streptokinase (SK) domains in binding human Glu1-plasminogen (Plg) have been studied using a set of proteolytic fragments, each of which encompasses one or more of SK's three structural domains (A, B, C). Direct binding experiments have been performed using gel filtration chromatography and surface plasmon resonance. The latter technique has allowed estimation of association and dissociation rate constants for interactions between Plg and intact SK or SK fragments. Each of the SK fragments that contains domain B (fragments A2-B-C, A2-B, B-C, and B) binds Plg with similar affinity, at a level approximately 100- to 1,000-fold lower than intact SK. Experiments using 10 mM 6-aminohexanoic acid or 50 mM benzamidine demonstrate that either of these two lysine analogues abolishes interaction of domain B with Plg. Isolated domain C does not show detectable binding to Plg. Moreover, the additional presence of domain C within other SK fragments (B-C and A2-B-C) does not alter significantly their affinities for Plg. In addition, Plg-binding by a noncovalent complex of two SK fragments that contains domains A and B is similar to that of domain B. By contrast, species containing domain B and both domains A and C (intact SK and the two-chain complex A1 x A2-B-C) show a significantly higher affinity for Plg, which could not be completely inhibited by saturating amounts of 6-AHA. These results show that SK domain B interacts with Plg in a lysine-dependent manner and that although domains A and C do not appear independently to possess affinity for Plg, they function cooperatively to establish the additional interactions with Plg to form an efficient native-like Plg activator complex.  相似文献   

3.
Streptococcus equisimilis streptokinase (SK) is a bacterial protein of unknown tertiary structure and domain organization that is used extensively to treat acute myocardial infarction following coronary thrombosis. Six fragments of SK were generated by limited proteolysis with chymotrypsin and purified. NMR and CD experiments have shown that the secondary and tertiary structure present in the native molecule is preserved within all fragments, except the N-terminal fragment SK7. NMR spectra demonstrate the presence in SK of three structurally autonomous domains and a less structured C-terminal "tail." Cleavage within the N-terminal domain generates an N-terminal fragment, SK7, which remains noncovalently associated with the remainder of the molecule; in isolation, SK7 adopts an unfolded conformation. The abilities of these fragments to induce active site formation within human plasminogen upon formation of their heterodimeric complex were assayed. The lowest mass SK fragment exhibiting Plg-dependent activator activity was shown to be SK27 (mass 27,000, residues 147-380), which contains both central and C-terminal domains, although this activity was reduced approximately 6,000-fold relative to that of full-length SK. The activity of a 36,000 mass fragment, SK36 (residues 64-380), which differs from SK27 in possessing a portion of the N-terminal domain, was reduced to 0.1-1.0% of that of SK. Other fragments (masses 7,000, 11,000, 16,000, 17,000, 25,000, and 26,000), representing either single domains or single domains extended by portions of other domains, were inactive. However, SK7 (residues 1-63), at a 100-fold molar excess concentration, greatly potentiated the activities of SK27 and SK36, by up to 50- and > 130-fold, respectively. These findings demonstrate that all of SK's three domains are essential for native-like SK activity. The central and C-terminal domains mediate plasminogen-binding and active site-generating functions, whereas the N-terminal domain mediates an activity-potentiating function.  相似文献   

4.
M J Bogusky  C M Dobson  R A Smith 《Biochemistry》1989,28(16):6728-6735
Human urinary-type plasminogen activator (urokinase) and proteolytic fragments corresponding to the kringle, EGF-kringle, and protease domains have been examined by 1H NMR spectroscopy. The intact protein shows a very well-resolved spectrum for a molecule of this size (MW 54,000), with resonance line widths not greatly increased from those of the isolated domains. On increasing the temperature, the protein at pH values close to 4 was found to undergo two distinct and reversible conformational transitions. These were identified, by comparison with spectra of the proteolytic fragments, as the unfolding of the kringle (and EGF) domains (at approximately 42 degrees C) and of a segment of the protease domain (at approximately 60 degrees C). The remaining segment of the protease domain showed persistent structure to at least 85 degrees C at pH 4; only at lower pH values could complete unfolding be achieved. The results indicate that the structures and stabilities of the isolated domains are closely similar to those in the intact protein and suggest that there is a degree of independent motion at least between the kringle and protease domains.  相似文献   

5.
Sedimentation analysis in the analytical ultracentrifuge has been used to characterize the size and shape of thermolysin and a number of its fragments obtained by chemical or enzymatic cleavage of the protein. Four fragments (121-316, 206-316, 225/226-316 and 255-316) originate from the C-terminal domain, and two (1-155 and 1-205) from the N-terminal domain of the intact molecule. In aqueous solution at neutral pH the hydrodynamic properties of the C-terminal fragments, except 255-316, are consistent with compact homogeneous monomers. Fragment 255-316 is a monomeric species below 0.08 mg/ml concentration and forms a dimer above this concentration. Dimerization does not lead to changes in fragment conformation, as determined by far-ultraviolet circular dichroic measurements, but to an increase of 5.6 degrees C (to 68.2 degrees C at 1.0 mg/ml) in the temperature for thermal unfolding and a corresponding increase of 4.6 kJ/mol in the free energy of unfolding. Fragments derived from the N-terminal domain show a strong tendency to form high-molecular-mass aggregates. Previous experiments utilizing circular dichroic measurements and antibody binding data suggested that the C-terminal fragments listed above are able to refold in aqueous solution at neutral pH into a stable conformation of native-like characteristics [Dalzoppo, D., Vita, C. & Fontana, A. (1985) J. Mol. Biol. 182, 331-340] (and references cited therein). Present data establish that all these C-terminal fragments are globular monomeric species in solution (at concentrations approximately 0.1 mg/ml) and thus represent 'isolated' domains (or subdomains) with intrinsic conformational stability typical of small globular proteins.  相似文献   

6.
Changes in the conformational state of human plasma fibronectin and several of its fragments were studied by fluorescence emission, intrinsic fluorescence polarization and c.d. spectroscopy under conditions of guanidinium chloride-and temperature-induced unfolding. Fragments were chosen to represent all three types of internal structural homology in the protein. Low concentration (less than 2 M) of guanidinium chloride induced a gradual transition in the intact protein that was not characteristic of any of the isolated domains, suggesting the presence of interdomain interactions within the protein. Intermediate concentrations of guanidinium chloride (2-3 M) and moderately elevated temperatures (55-60 degrees C) induced a highly co-operative structural transition in intact fibronectin that was attributable to the central 110 kDa cell-binding domain. High temperatures (greater than 60 degrees C) produced a gradual unfolding in the intact protein attributable to the 29 kDa N-terminal heparin-binding and 40 kDa collagen-binding domains. Binding of heparin to intact fibronectin and to its N-terminal fragment stabilized the proteins against thermal unfolding. This was reflected in increased delta H for the unfolding transitions of the heparin-bound N-terminal fragment, as well as decreased accessibility to solvent perturbants of internal chromophores in this fragment when bound to heparin. These results help to account for the biological efficacy of the interaction between the fibronectin N-terminal domain and heparin, despite its relatively low affinity.  相似文献   

7.
The thermal unfolding of xylanase A from Streptomyces lividans, and of its isolated substrate binding and catalytic domains, was studied by differential scanning calorimetry and Fourier transform infrared and circular dichroism spectroscopy. Our calorimetric studies show that the thermal denaturation of the intact enzyme is a complex process consisting of two endothermic events centered near 57 and 64 degrees C and an exothermic event centered near 75 degrees C, all of which overlap slightly on the temperature scale. A comparison of the data obtained with the intact enzyme and isolated substrate binding and catalytic domains indicate that the lower- and higher-temperature endothermic events are attributable to the thermal unfolding of the xylan binding and catalytic domains, respectively, whereas the higher-temperature exothermic event arises from the aggregation and precipitation of the denatured catalytic domain. Moreover, the thermal unfolding of the two domains of the native enzyme are thermodynamically independent and differentially sensitive to pH. The unfolding of the substrate binding domain is a reversible two-state process and, under appropriate conditions, the refolding of this domain to its native conformation can occur. In contrast, the unfolding of the catalytic domain is a more complex process in which two subdomains unfold independently over a similar temperature range. Also, the unfolding of the catalytic domain leads to aggregation and precipitation, which effectively precludes the refolding of the protein to its native conformation. These observations are compatible with the results of our spectroscopic studies, which show that the catalytic and substrate binding domains of the enzyme are structurally dissimilar and that their native conformations are unaffected by their association in the intact enzyme. Thus, the calorimetric and spectroscopic data demonstrate that the S. lividans xylanase A consists of structurally dissimilar catalytic and substrate binding domains that, although covalently linked, undergo essentially independent thermal denaturation. These observations provide valuable new insights into the structure and thermal stability of this enzyme and should assist our efforts at engineering xylanases that are more thermally robust and otherwise better suited for industrial applications.  相似文献   

8.
Calbindin D28k is an intracellular Ca(2+)-binding protein containing six subdomains of EF-hand type. The number and identity of the globular domains within this protein have been elucidated using six synthetic peptide fragments, each corresponding to one EF-hand subdomain. All six peptides were mixed in equimolar amounts in the presence of 10 mM Ca2+ to allow for the reconstitution of domains. The mixture was compared to native calbindin D28k and to the sum of the properties of the individual peptides using circular dichroism (CD), fluorescence, and 1H NMR spectroscopy, as well as gel filtration and ion-exchange chromatography. It was anticipated that if the peptides associate to form native-like domains, the properties would be similar to those of the intact protein, whereas if they did not interact, they would be the same as the properties of the isolated peptides. The results show that the peptides in the mixture interact with one another. For example, the CD and fluorescence spectra for the mixture are very similar to those of the intact calbindin D28k, suggesting that the mixed EF-hand fragments associate to form a native-like structure. To determine the number of domains and the subdomain composition of each domain in calbindin D28k, a variety of peptide combinations containing two to five EF-hand fragments were studied. The spectral and chromatographic properties of all the mixtures containing less than six peptides were closer to the sum of the properties of the relevant individual peptides than to the mixture of the six peptides. The results strongly suggest that all six EF-hands are packed into one globular domain. The association of the peptide fragments is observed to drive the folding of the individual subdomains. For example, one of the fragments, EF2, which is largely unstructured in isolation even in the presence of high concentrations of Ca2+, is considerably more structured in the presence of the other peptides, as judged by CD difference spectroscopy. The CD data also suggest that the packing between the individual subdomains is specific.  相似文献   

9.
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions.  相似文献   

10.
The N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3' kinase is cleaved specifically into 9- and 5-kD fragments by limited proteolytic digestion with trypsin. The noncovalent SH2 domain complex and its constituent tryptic peptides have been investigated using high-resolution heteronuclear magnetic resonance (NMR). These studies have established the viability of the SH2 domain as a fragment complementation system. The individual peptide fragments are predominantly unstructured in solution. In contrast, the noncovalent 9-kD + 5-kD complex shows a native-like (1)H-(15)N HSQC spectrum, demonstrating that the two fragments fold into a native-like structure on binding. Chemical shift analysis of the noncovalent complex compared to the native SH2 domain reveals that the highest degree of perturbation in the structure occurs at the cleavage site within a flexible loop and along the hydrophobic interface between the two peptide fragments. Mapping of these chemical shift changes on the structure of the domain reveals changes consistent with the reduction in affinity for the target peptide ligand observed in the noncovalent complex relative to the intact protein. The 5-kD fragment of the homologous Src protein is incapable of structurally complementing the p85 9-kD fragment, either in complex formation or in the context of the full-length protein. These high-resolution structural studies of the SH2 domain fragment complementation features establish the suitability of the system for further protein-folding and design studies.  相似文献   

11.
The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric gamma-crystallins and oligomeric beta-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human gammaD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human gammaD-crystallin, as well as the isolated domains of human gammaS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37 degrees C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human gammaD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein.  相似文献   

12.
Chemical and thermal denaturation of calmodulin has been monitored spectroscopically to determine the stability for the intact protein and its two isolated domains as a function of binding of Ca2+ or Mg2+. The reversible urea unfolding of either isolated apo-domain follows a two-state mechanism with relatively low deltaG(o)20 values of approximately 2.7 (N-domain) and approximately 1.9 kcal/mol (C-domain). The apo-C-domain is significantly unfolded at normal temperatures (20-25 degrees C). The greater affinity of the C-domain for Ca2+ causes it to be more stable than the N-domain at [Ca2+] > or = 0.3 mM. By contrast, Mg2+ causes a greater stabilization of the N- rather than the C-domain, consistent with measured Mg2+ affinities. For the intact protein (+/-Ca2+), the bimodal denaturation profiles can be analyzed to give two deltaG(o)20 values, which differ significantly from those of the isolated domains, with one domain being less stable and one domain more stable. The observed stability of the domains is strongly dependent on solution conditions such as ionic strength, as well as specific effects due to metal ion binding. In the intact protein, different folding intermediates are observed, depending on the ionic composition. The results illustrate that a protein of low intrinsic stability is liable to major perturbation of its unfolding properties by environmental conditions and liganding processes and, by extension, mutation. Hence, the observed stability of an isolated domain may differ significantly from the stability of the same structure in a multidomain protein. These results address questions involved in manipulating the stability of a protein or its domains by site directed mutagenesis and protein engineering.  相似文献   

13.
Hamill AC  Wang SC  Lee CT 《Biochemistry》2005,44(46):15139-15149
A means to control lysozyme conformation with light illumination has been developed using the interaction of the protein with a photoresponsive surfactant. Upon exposure to the appropriate wavelength of light, the azobenzene surfactant undergoes a reversible photoisomerization, with the visible-light (trans) form being more hydrophobic than the UV-light (cis) form. As a result, surfactant binding to the protein and, thus, protein unfolding, can be tuned with light. Small-angle neutron scattering (SANS) measurements were used to provide detailed information of the protein conformation in solution. Shape-reconstruction methods applied to the SANS data indicate that under visible light the protein exhibits a native-like form at low surfactant concentrations, a partially swollen form at intermediate concentrations, and a swollen/unfolded form at higher surfactant concentrations. Furthermore, the SANS data combined with FT-IR spectroscopic analysis of the protein secondary structure reveal that unfolding occurs primarily in the alpha domain of lysozyme, while the beta domain remains relatively intact. Thus, the surfactant-unfolded intermediate of lysozyme appears to be a separate structure than the well-known alpha-domain intermediate of lysozyme that contains a folded alpha domain and unfolded beta domain. Because the interactions between the photosurfactant and protein can be tuned with light, illumination with UV light returns the protein to a native-like conformation. Fluorescence emission data of the nonpolar probe Nile red indicate that hydrophobic domains become available for probe partitioning in surfactant-protein solutions under visible light, while the availability of these hydrophobic domains to the probe decrease under UV light. Dynamic light scattering and UV-vis spectroscopic measurements further confirm the shape-reconstruction findings and reveal three discrete conformations of lysozyme. The results clearly demonstrate that visible light causes a greater degree of lysozyme swelling than UV light, thus allowing for the protein conformation to be controlled with light.  相似文献   

14.
Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (μPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the ‘addition’ of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the “long-range” enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.  相似文献   

15.
Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (μPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the 'addition' of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the "long-range" enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.  相似文献   

16.
FKBP22 from a psychrotrophic bacterium Shewanella sp. SIB1, is a dimeric protein with peptidyl prolyl cis-trans isomerase (PPIase) activity. According to homology modeling, it consists of an N-terminal domain, which is involved in dimerization of the protein, and a C-terminal catalytic domain. A long alpha3 helix spans these domains. An N-domain with the entire alpha3 helix (N-domain+) and a C-domain with the entire alpha3 helix (C-domain+) were overproduced in Escherichia coli in a His-tagged form, purified, and their biochemical properties were compared with those of the intact protein. C-domain+ was shown to be a monomer and enzymatically active. Its optimum temperature for activity (10 degrees C) was identical to that of the intact protein. Determination of the PPIase activity using peptide and protein substrates suggests that dimerization is required to make the protein fully active for the protein substrate or that the N-domain is involved in substrate-binding. The differential scanning calorimetry studies revealed two distinct heat absorption peaks at 32.5 degrees C and 46.6 degrees C for the intact protein, and single heat absorption peaks at 44.7 degrees C for N-domain+ and 35.6 degrees C for C-domain+. These results indicate that the thermal unfolding transitions of the intact protein at lower and higher temperatures represent those of C- and N-domains, respectively. Because the unfolding temperature of C-domain+ is much higher than its optimum temperature for activity, SIB1 FKBP22 may adapt to low temperatures by increasing a local flexibility around the active site. This study revealed the relationship between the stability and the activity of a psychrotrophic FKBP22.  相似文献   

17.
Shigella flexneri is a facultative intracellular pathogen that causes severe gastroenteritis in humans. Invasion plasmid antigen D (IpaD) is an essential participant in Shigella invasion of intestinal cells, but no detailed structural information is available to help understand the proposed role of IpaD in invasion or its interaction with other invasion proteins. Therefore, the secondary and tertiary structure and thermal stability of IpaD as well as selected IpaD deletion mutants were investigated using Fourier transform infrared (FTIR), circular dichroism (CD), and both intrinsic and extrinsic fluorescence spectroscopies. The energetics of thermal unfolding were also evaluated by differential scanning calorimetry (DSC). Secondary-structure analysis by CD and FTIR suggests that that IpaD is primarily alpha-helical with characteristics of a intramolecular coiled coil. Thermal studies revealed that the unfolding of IpaD is a complex process consisting of two transitions centered near 59 and 80 degrees C. A comparison of the data obtained with the intact protein and selected deletion mutants indicated that the lower temperature transition is a reversible event attributable to the unfolding of a small domain located at the N terminus of IpaD. In contrast, the thermal unfolding of the proposed major and highly stable C-terminal domain was irreversible and led to protein aggregation. When the results are taken together, they strongly support the idea that IpaD has two independent folding domains.  相似文献   

18.
Camelidae possess an unusual form of antibodies lacking the light chains. The variable domain of these heavy chain antibodies (V(HH)) is not paired, while the V(H) domain of all other antibodies forms a heterodimer with the variable domain of the light chain (V(L)), held together by a hydrophobic interface. Here, we analyzed the biophysical properties of four camelid V(HH) fragments (H14, AMD9, RN05, and CA05) and two human consensus V(H)3 domains with different CDR3 loops to gain insight into factors determining stability and aggregation of immunoglobulin domains. We show by denaturant-induced unfolding equilibria that the free energies of unfolding of V(HH) fragments are characterized by Delta G(N-U) values between 21.1 and 35.0 kJ/mol and thus lie in the upper range of values for V(H) fragments from murine and human antibodies. Nevertheless, the V(HH) fragments studied here did not reach the high values between 39.7 and 52.7 kJ/mol of the human consensus V(H)3 domains with which they share the highest degree of sequence similarity. Temperature-induced unfolding of the V(HH) fragments that were studied proved to be reversible, and the binding affinity after cooling was fully retained. The melting temperatures were determined to be between 60.1 and 66.7 degrees C. In contrast, the studied V(H)3 domains aggregated during temperature-induced denaturation at 63-65 degrees C. In summary, the camelid V(HH) fragments are characterized by a favorable but not unusually high stability. Their hallmark is the ability to reversibly melt without aggregation, probably mediated by the surface mutations characterizing the V(HH) domains, which allow them to regain binding activity after heat renaturation.  相似文献   

19.
The paper reports on two fungal laccases from Coriolus hirsutus and Coriolus zonatus and their type-2 copper-depleted derivatives. Temperature-induced changes of the copper centers were characterized by optical and electron paramagnetic resonance (EPR) spectroscopy, and the overall protein stability by differential scanning microcalorimetry. The intact enzymes showed highly cooperative thermal unfolding transitions at about 90 degrees C. Type-2 copper depletion led to uncoupling of the domains characterized by a different melting pattern which resolved three subtransitions. Melting curves monitored optically at 290, 340 and 610 nm showed additional transitions below thermal unfolding temperature. EPR spectra of the intact laccases showed the disintegration of the trinuclear copper cluster accompanied by loss of one of the copper ions and disappearance of the strong antiferromagnetic coupling in the type-3 site at 70 degrees C and above 70 degrees C. The copper centers of type-2 copper-depleted laccase showed reduced thermotolerance.  相似文献   

20.
The urea and heat-induced unfolding-refolding behaviours of chicken egg white ovomucoid and its four fragments representing domains I, II + III, I + II and III were systematically investigated in 0.06 M sodium phosphate buffer (pH 7.0) by difference spectral measurements. The effect of temperature on ovomucoid and its fragments was also studied in 0.05 M sodium acetate buffer (pH 5.0) and in presence of 2 M urea at pH 7.0. Intrinsic viscosity data showed that ovomucoid and its different fragments did not lose any significant amount of their structure under mild acidic conditions (pH 4.6). Difference spectral results showed extensive disruption of the native structure by urea or temperature. Isothermal transitions showed single-step for domain I, domain I + II and domain III, and two-step having one stable intermediate, for ovomucoid and its fragment representing domain II + III. However, the presence of intermediate was not detected when the transitions were studied with temperature at pH 7.0. Strikingly, the single-step thermal transitions of ovomucoid and its fragment representing domain II + III, became two-step when measured either at pH 5.0 or in presence of 2 M urea at pH 7.0. Analysis of the equilibrium data on urea and heat denaturation showed that the second transition observed with ovomucoid or domain II + III represent the unfolding of domain III. The kinetic results of ovomucoid and its fragments indicate that the protein unfolds with three kinetic phases. A comparison of three rate constants for the unfolding of intact ovomucoid with that of its various fragments revealed that domain I, II and III of the protein correspond to the three kinetic phases having rate constants 0.456, 0.120 and 0.054 min-1, respectively. These data have led us to conclude: (i) the unusual stability of ovomucoid towards various denaturants, including temperature, is due to its domain III, (ii) initiation of the folding of the ovomucoid molecule starts from its NH2-terminal region which probably provides the nucleation site for the formation of the subsequent structure and (iii) domains I and II have greater mutual recognition between them as compared to the recognition either of them have with domain III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号