首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis.  相似文献   

2.
cDNA clones encoding the PS I-H subunit of photosystem I wereisolated from Nicotiana tabacum and Nicotiana sylvestris. Thenucleotide sequences of three clones showed that, in both species,the mature PS I-H protein consists of 95 amino acid residuesand has a calculated molecular mass of 10.3 kDa. 3 Present address: The Institute of Physical and Chemical Research,Tsukuba, 305 Japan.  相似文献   

3.
Solavetivone, 3-hydroxysolavetivone, solanascone, phytuberin and phytuberol were identified as stress compounds in leaves of Nicotiana tabacum cv Samsun NN. N. sylvestris, which is the maternal progenitor of N. tabacum, produced all the above compounds except 3-hydroxysolavetivone. In the F1, hybrid of N. tabacum and N. glutinosa, all the stress compounds produced by N. tabacum and N. glutinosa, respectively, were accumulated.  相似文献   

4.
Ferredoxin Cross-Links to a 22 kD Subunit of Photosystem I   总被引:15,自引:8,他引:7       下载免费PDF全文
We have used a cross-linking approach to study the interaction of ferredoxin (Fd) with photosystem I (PSI). The cross-linking reagent N-ethyl-3-(3-dimethylaminopropyl) carbodiimide was found to cross-link spinach Fd to a 22 kilodalton subunit of PSI in both isolated spinach (Spinacia oleracea) PSI complexes and spinach thylakoid membranes. The product had an apparent molecular weight of 38 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was identified as a cross-linked product using specific antibodies to Fd and the 22 kilodalton subunit. In both a native PSI complex (200 Chl/P700) and a PSI core complex (100 Chl/P700), a second cross-linked product at 36 kilodaltons was seen. The latter cross-reacted with an antibody to Fd but did not cross-react with antibodies directed against the 24.3, 22, 19, 17.3 or 8.5 kilodalton, or psaC subunits of PSI. Its composition remains to be determined. In thylakoids only the 38 kilodalton product was observed along with a cross-linked complex of Fd and Fd:NADP+ reductase.  相似文献   

5.
We have quantified the lateral distribution of 12 thylakoid proteins of Spirodela oligorrhiza by immunoblot analysis of detergent-derived granal and stromal lamellae. The immunological, ultrastructural, cytochemical, and biophysical measurements each indicated the expected overall separation of photosystem II (PSII) and photosystem I (PSI) components; however, certain proteins were not completely localized to one lamellar fraction. The apoproteins of the light harvesting chlorophyll a/b complex, subunit 1 of PSI and the components of the PSII reaction center (the 32 kilodalton, D2, and cytochrome b559 proteins) were dually located between granal and stromal lamellae. Proteins associated exclusively with one of the membrane types were: in granal lamellae, the 43 and 51 kilodalton PSII proteins, and in stromal lamellae, the α and β subunits of the proton ATPase.  相似文献   

6.
Photosystem I contains several peripheral membrane proteins that are located on either positive (luminal) or negative (stromal or cytoplasmic) sides of thylakoid membranes of chloroplasts or cyanobacteria. Incorporation of two peripheral subunits into photosystem I of the cyanobacterium Synechocystis species PCC 6803 was studied using a reconstitution system in which radiolabeled subunits II (PsaD) and IV (PsaE) were synthesized in vitro and incubated with the isolated thylakoid membranes. After such incubation, the subunits were found in the membranes and were resistant to digestion with proteases and removal by 2 molar NaBr. All of the radioactive proteins incorporated in the membrane were found in the photosystem I complex. The subunit II was assembled specifically into cyanobacterial thylakoid membranes and not into Escherichia coli cell membranes or thylakoid membranes isolated from spinach. The assembly process did not require ATP or proton motive force, and it was not stimulated by ATP. The assembly of subunits II and IV into thylakoid membranes isolated from the strain AEK2, which lacks the gene psaE, was increased two- to threefold. The incorporation of subunit II was 15 to 17 times higher in the thylakoids obtained from the strain ADK3 in which the gene psaD has been inactivated. However, assembly of subunit IV in the same thylakoids was reduced by 65%, demonstrating that the presence of subunit II is required for the stable assembly of subunit IV. Large deletions in subunit II prevented its incorporation into thylakoids and assembly into photosystem I, suggesting that the overall conformation of the protein rather than a specific targeting sequence is required for its assembly into photosystem I.  相似文献   

7.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Li LR  Sisson VA  Kung SD 《Plant physiology》1983,71(2):404-408
Genetic variability in the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in several Nicotiana species has been characterized by isoelectric focusing patterns. This heritable variation provides an opportunity to examine the functional role of each of these subunits. In this study, specifically designed RuBPCase enzymes composed of identical large subunits but different small subunits were constructed in vivo by interspecific hybridization between the species N. sylvestris, N. tabacum, N. glauca, N. glutinosa, N. plumbaginifolia, and N. tomentosiformis. Small subunit polypeptides were combined to form a sequence of one, two, three, and four polypeptides with the large subunit of N. sylvestris. Kinetic properties of these hybrid enzymes were compared. No differences in the specific activity of either carboxylation or oxygenation nor in Km values for ribulose 1,5-bisphosphate, CO2, or O2 were detected among the RuBPCase enzymes from the various interspecific hybrids. Likewise, the ratio of carboxylation to oxygenation was constant.  相似文献   

9.
There are significant differences in nuclear DNA amount between both diploid and amphidiploid species of Nicotiana. Owing to the higher DNA density in the interphase nuclei of the amphidiploids DNA amounts tend to be underestimated by microdensitometry. After applying necessary corrections to amphidiploid readings it was found that: (1) The nuclear DNA amount in the tetraploid N. rustica is not significantly different from the sum of nuclear DNA amounts in reputed diploid parents, N. undulata and N. paniculata. (2) It is well established that N. sylvestris is one of the diploid progenitors of N. tabacum. The sum of the nuclear DNA amounts in N. sylvestris and N. tomentosiformis is not significantly different from that of the amphidiploid N. tabacum. In contrast the sum of the DNA amounts in N. sylvestris and N. otophora is significantly higher than that in N. tabacum. Observations and measurements of the amount and distribution of heterochromatin in interphase nuclei of the diploid and tetraploid species give further support to the conclusion that N. tomentosiformis rather than N. otophora is the second diploid progenitor of N. tabacum.  相似文献   

10.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

11.
Summary The restriction profiles of chloroplast DNA (cpDNA) from Nicotiana tabacum, N. sylvestris, N. plumbaginifolia, and N. otophora were obtained with respect to AvaI, BamHI, BglI, HindIII, PstI, PvuII, SalI, and XhoI. An efficient mapping method for the construction of cpDNA physical maps in Nicotiana was established via a computer-aided analysis of the complete cpDNA sequence of N. tabacum for probe selection. The efficiency of this approach is demonstrated by the determination of cpDNA maps from N. sylvestris, N. plumbaginifolia, and N. otophora with respect to all of the above restriction endonucleases. The size and basic structure of the cpDNA from the three species are almost identical, with an addition of approximately 80 bp in N. plumbaginifolia. The restriction patterns and hence the physical maps between N. tabacum and N. sylvestris cpDNA are identical and there is no difference in the Pvull digests of cpDNA from all four species. Restriction site variations in cpDNA from different species probably result from point mutations, which create or eliminate a particular cutting site, and they were observed spanning the whole chloroplast molecule but highly concentrated in both ends of the large, single-copy region. The results presented here will be used for the forthcoming characterization of chloroplast genomes in the interspecies somatic hybrids of Nicotiana, and will be of great value in completing the exploration of the phylogenetic relationships within this already extensively studied genus.  相似文献   

12.
The PSI-H subunit of photosystem I has two isoforms of differingmolecular mass in Nicotiana sylvestris [Obokata et al. (1993)Plant Physiol. 102: 1259], and is encoded by a nuclear gene,psaH. We identified three structurally distinct psaH genes inthe nuclear genome of N. sylvestris, designated psaHa, psaHb,and psaHc, and all three genes are expressed in young leaves.Each gene has two introns: one between sequences encoding atransit peptide and the N-terminal acidic domain, and one betweenthe N-terminal domain and a central hydrophobic domain. Thededuced amino acid sequences are identical in the mature proteinsand differ only in the transit peptides. Since PSI-H is presentin two isoforms in N. sylvestris, the psaH products may be subjectedto post-translational modifications. (Received November 8, 1993; Accepted December 28, 1993)  相似文献   

13.
14.
Tezuka T  Kuboyama T  Matsuda T  Marubashi W 《Planta》2007,226(3):753-764
Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi × N. sylvestris, but not in hybrid seedlings from the cross N. debneyi × N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum × N. debneyi.  相似文献   

15.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

16.
Biosynthesis of the Tonoplast H-ATPase from Oats   总被引:2,自引:1,他引:1       下载免费PDF全文
Randall SK  Sze H 《Plant physiology》1989,89(4):1292-1298
To determine whether the tonoplast-type H+-ATPase was differentially synthesized in various parts of the oat seedling, sections of 4-day-old oat (Avena sativa L. var Lang) seedlings were labeled in vivo with [35S]methionine and ATPase subunits were precipitated with polyclonal antisera. ATPase subunits were detected in all portions of the seedling with the exception of the seed. Lesser amounts of the 60 and 72 kilodalton polypeptides of the ATPase were found in apical regions (0-5 millimeter) than in maturing regions (10-15, or 20-25 millimeter from the tip) of the roots or shoots. To initiate a study of the biosynthesis of the ATPase, the intracellular site of synthesis for two peripheral ATPase subunits was investigated. Poly(A) RNA from either free or membrane-bound polysomes was isolated and translated in vitro. Message encoding the 72 kilodalton (catalytic) subunit was found predominantly in mRNA isolated from membrane-bound polysomes. In contrast, the message for the 60 kilodalton (putative regulatory) subunit was found predominantly on free polysomes. Polypeptides synthesized in vivo or obtained from RNA translated in vitro exhibited no apparent size differences (limit of resolution, approximately 1 kilodalton), suggesting the absence of cleaved precursors for the 72 or 60 kilodalton subunits. These data suggest a complex mechanism for the synthesis and assembly of the tonoplast ATPase.  相似文献   

17.
Tezuka T  Marubashi W 《PloS one》2012,7(4):e36204

Background

Many species of Nicotiana section Suaveolentes produce inviable F1 hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section SuaveolentesN. tabacum are inviable despite a lack of the Q chromosome.

Methodology/Principal Findings

Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable.

Conclusions/Significance

Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis.  相似文献   

18.
19.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

20.
Cultivated tobacco (Nicotiana tabacum L.) is a classic amphidiploid, and hybrids between this cultivated species and closely related diploid Nicotiana relatives often exhibit heterotic effects for growth rate and yield. Crosses between N. tabacum and synthetic tobaccos, 4x(Nicotiana sylvestris × Nicotiana otophora) or 4x(N. sylvestris × Nicotiana tomentosiformis), may provide superior routes for genome-wide introgression from diploid relatives and allow increased potential to capitalize on heterotic effects in tobacco. Significant levels of mid-parent heterosis were observed for yield and growth rate in F1 hybrids between synthetic tobaccos and a standard tobacco cultivar. Microsatellite marker genotyping of an F2 population derived from a K326 × [4x(N. sylvestris × N. otophora)] cross was carried out to preliminarily investigate the relative importance of different types of gene action on observed heterosis in the original interspecific cross. Results suggested a role for both partial dominance and overdominance. Marker genotyping also indicated an overall reduced level of recombination in the N. tabacum × synthetic tobacco cross relative to a N. tabacum × N. tabacum cross but no evidence of genomic regions with severely restricted levels of recombination. Results suggest that populations derived from N. tabacum × synthetic tobacco crosses may be more efficient for introgressing germplasm from diploid relatives, as compared to populations derived from crosses between N. tabacum and diploid forms where preferential pairing between N. tabacum homologues can reduce the potential for introgression of alien chromatin. Such materials may be useful as sources of favorable alleles influencing quantitative characters in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号