首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary structure of NAD-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 is determined. The enzyme is composed of two identical subunits, each comprising 393 amino acid residues, and has a molecular weight of 43.1 kD. To elucidate the protein's amino acid sequence, four types of digestion were used: cyanogen bromide cleavage at methionine residues, endoproteinase Lys-C digestion at lysine residues, endoproteinase Glu-C cleavage at glutamic acid residues, and tryptic digestion. The peptides obtained were purified to homogeneity and characterized.  相似文献   

2.
L H Schulman  H Pelka    O Leon 《Nucleic acids research》1987,15(24):10523-10530
A protein affinity labeling derivative of E. coli tRNA(fMet) carrying lysine-reactive cross-linking groups has been covalently coupled to monomeric trypsin-modified E. coli methionyl-tRNA synthetase. The cross-linked tRNA-synthetase complex has been isolated by gel filtration, digested with trypsin, and the tRNA-bound peptides separated from the bulk of the free tryptic peptides by anion exchange chromatography. The bound peptides were released from the tRNA by cleavage of the disulfide bond of the cross-linker and purified by reverse-phase high-pressure liquid chromatography, yielding three major peptides. These peptides were found to cochromatograph with three peptides of known sequence previously cross-linked to native methionyl-tRNA synthetase through lysine residues 402, 439 and 465. These results show that identical lysine residues are in close proximity to tRNA(fMet) bound to native dimeric methionyl-tRNA synthetase and to the crystallizable monomeric form of the enzyme, and indicate that cross-linking to the dimeric protein occurs on the occupied subunit of the 1:1 tRNA-synthetase complex.  相似文献   

3.
Wang D  Thompson P  Cole PA  Cotter RJ 《Proteomics》2005,5(9):2288-2296
Matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry (MS/MS) were used to determine the multiple acetylation sites in the histone acetyltransferase (HAT): p300-HAT. Partial cleavage of the peptides containing acetylated lysine residues by trypsin provided a set of nested sequences that enabled us to determine that multiple acetylation occurs on the same molecule. At the same time, cleavages resulting in a terminal unacetylated lysine suggested that not all of these sites are fully modified. Using MS and MS/MS, we were able to characterize both the unmodified and acetylated tryptic peptides covering more than 82% of the protein.  相似文献   

4.
In order to elucidate the complete amino acid sequence of Pseudomonas putida cytochrome P-450, tryptic digestion was performed on the S-carboxymethylated enzyme. Although cleavage did not occur at every lysyl and arginyl bond, 31 tryptic peptides ranging in size from 1 to 55 residues were isolated. These were sequenced by manual Edman degradation and carboxypeptidase digestion. Overlaps of some od these tryptic peptides were obtained by data obtained from partial Edman degradation and amino acid composition of the clostripain cleavage products. These results, together with data from the cyanogen bromide and acid cleavage peptides reported in the accompanying paper, established the complete amino acid sequence of P. putida cytochrome P-450.  相似文献   

5.
The four peptide segments obtained from rabbit muscle aldolase by cleavage with BrCN and separation with gel-filtration chromatography (1) have been redesignated according to their positions in the molecule, N-A-B-C. The primary structure of segment A, containing 66 amino acid residues, including the Schiff base-forming lysine at the active site, has been elucidated by isolation and sequence analyses of the proteolytic subfragments. Preliminary separation of tryptic peptides containing 7–25 residues was achieved by chromatography on Sephadex G-25 which facilitated subsequent purification. For the study of the tryptic peptide of 25 residues further fragmentation with pepsin then subtilisin (Nagarse) was employed. Edman degradation directly after subtilisin cleavage of a peptide was found useful in avoiding deamidation of a glutamine NH2-terminus newly formed in the proteolysis. The sequence of 90 amino acids in the center region of the polypeptide chain of rabbit muscle aldolase has now been established.  相似文献   

6.
Neurospora NADP-specific glutamate dehydrogenase that was treated with iodoacetate, iodoacetamide, or N-ethylmaleimide to block the thiol groups was cleaved with cyanogen bromide. Of the expected 10 peptides, based on a methionine content of 9 residues, 8 were obtained in pure form and 2 were handled as a mixture. The fragments ranged in size from 9 to 109 residues. In addition, there were isolated 6 peptides, produced by anomalous cleavage at the carboxyl groups of tryptophan residues, and two by hydrolysis of an aspartyl-proline bond. Preliminary separation of these peptides was accomplished by gel filtration followed by either ion-exchange chromatography of the larger peptides or by paper chromatography and paper electrophoresis of the smaller fragments. Ordering of the CNBr fragments in sequence was based upon sequences of tryptic and chymotryptic peptides obtained in another laboratory. The complete sequence of the protein is presented. The amino acid sequences of the bovine and chicken liver glutamate dehydrogenases previously determined show considerable homology with the NADP-specific enzyme of Neurospora in the NH2-terminal half of the molecule; this includes the region of the specifically reactive lysine residue and the portion of the sequence that has been implicated in coenzyme binding. Particularly striking is the fact that most of the residues conserved among the three homologous proteins would be expected to be important for conformational, rather than catalytic, effects. This implies that the conformation of the Neurospora enzyme must be similar in parts of its structure to the vertebrate enzymes but undoubtedly differs in some regards.  相似文献   

7.
The complete amino acid sequence of 87 residues of cyanogen bromide fragment CB1 (Asp), the N-terminal fragment of human plasma albumine molecule, has been established. The sequence was determined from the characterization of all tryptic peptides and of chymotryptic arginine-containing peptides in the fragment digested. Overlaps were obtained by tryptic and chymotryptic cleavage of the maleylated S-sulfo derivative of fragment CB1(Asp). Residue 34 is the only cysteine residue in the albumin molecule and it was determined in the form of S-carboxymethyl-cysteine. Edman and dansyl-Edman degradation were used for the sequential analysis.  相似文献   

8.
Trypsin and cyanogen bromide were used for cleavage of the OSCP preparations. The peptide mixtures thus formed were separated into individual components by a combination of various chromatographic procedures: gel filtration, ion exchange and paper chromatography, as well as reversed-phase HPLC. As a result, 31 tryptic peptides and 9 out of 10 possible cyanogen bromide peptides were isolated. Determination of the amino acid sequences of these peptide allowed the alignment of cyanogen bromide fragments in the polypeptide chain that shed light on the "architecture" of the protein molecule as a whole. It also afforded the overlappings for tryptic peptides, 16 in the N-terminal and 8 in the C-terminal portions of the molecule.  相似文献   

9.
The partial amino acid sequence of two large peptides is described. These were prepared from the N-terminal half of the heavy chain of immunoglobulin G from pooled normal rabbit serum by tryptic digestion after the in-amino groups of the lysine residues had been blocked with S-ethyl trifluorothioacetate. These peptides are believed to account for about 145 residues of fragment C-1, the N-terminal section of rabbit immunoglobulin G heavy chain prepared by cyanogen bromide cleavage. The evidence from the present paper and the preceding paper (Cebra, Givol & Porter, 1968) suggests that it may be possible to deduce a predominant amino acid sequence for most, if not all, of this section of the molecule.  相似文献   

10.
Evidence from molecular weight studies and sequence analysis of bovine liver rhodanese indicates that the enzyme is a single polypeptide of molecular weight 35,200, and not a dimer of identical subunits half this size. The rhodanese molecule contains 317 amino acids including 5 methionines, 4 cysteines, and 5 tryptophans. As expected, six fragments were produced by cleavage with cyanogen bromide and these have been aligned in the enzyme with the aid of overlapping tryptic peptides isolated from a [14C] carboxymethylmethionyl rhodanese derivative. The cyanogen bromide fragments account for all of the amino acid residues of the parent rhodanese molecule. Methionine residues are located at positions 72, 112, 214, 217, and 235 in the polypeptide chain and the active site cysteine is at position 251, in the carboxyl-terminal segment of the molecule.  相似文献   

11.
Rabbit skeletal muscle glycogen synthase was inhibited by pyridoxal 5'-phosphate and irreversibly inactivated after sodium borohydride reduction of the enzyme-pyridoxal-P complex. The irreversible inactivation by pyridoxal-P was opposed by the presence of the substrate UDP-glucose. With [3H]pyridoxal-P, covalent incorporation of 3H label into the enzyme could be monitored. UDP-glucose protected against 3H incorporation, whereas glucose-6-P was ineffective. Peptide mapping of tryptic digests indicated that two distinct peptides were specifically modified by pyridoxal-P. One of these peptides contained the NH2-terminal sequence of the glycogen synthase subunit. Chymotrypsin cleavage of this peptide resulted in a single-labeled fragment with the sequence: Glu-Val-Ala-Asn-(Pyridoxal-P-Lys)-Val-Gly-Gly-Ile-Tyr. This sequence is identical to that previously reported (Tagaya, M., Nakano, K., and Fukui, T. (1985) J. Biol. Chem. 260. 6670-6676) for a peptide specifically modified by a substrate analogue and inferred to form part of the active site of the enzyme. Sequence analysis revealed that the modified lysine was located at residue 38 from the NH2 terminus of the rabbit muscle glycogen synthase subunit. An analogous tryptic peptide obtained from the rabbit liver isozyme displayed a high degree of sequence homology in the vicinity of the modified lysine. We propose that the extreme NH2 terminus of the glycogen synthase subunit forms part of the catalytic site, in close proximity to one of the phosphorylated regions of the enzyme (site 2, serine 7). In addition, the work extends the known NH2-terminal amino acid sequences of both the liver and muscle glycogen synthase isozymes.  相似文献   

12.
Chemical modification of phospholipase A2 (phosphatide 2-acyl-hydrolase, EC 3.1.1.4) from the venom of gaboon adder (Bitis gabonica) showed that histidine and lysine residues are essential for enzyme activity. Treatment with p-bromophenacyl bromide or pyridoxal 5'-phosphate resulted in the specific covalent modification of one histidine or a total of one lysine residue per molecule of enzyme, respectively, with a concomitant loss of enzyme activity. Competitive protection against modification and inactivation was afforded by the presence of Ca2+ and/or micellar concentrations of substrate analogue, lysophosphatidylcholine. Neither modification caused any significant conformational change, as judged from circular dichroic properties. Amino acid analyses and the alignment of peptides from cyanogen bromide and proteolytic cleavage of modified enzyme preparations delineated His-45 as the only residue modified by p-bromophenacyl bromide. However, pyridoxal 5'-phosphate was shown to have reacted not with a single lysine but with four different ones (residues 11, 33, 58 and 111) in such a manner that an overall stoichiometry of one modified lysine residue/molecule enzyme resulted. Apparently, the essential function of lysine could be fulfilled by any one out of these four residues.  相似文献   

13.
Cyanogen bromide cleavage of Fragment A from diphtheria toxin at the four methionines present in each molecule resulted in five major peptides which were isolated and studied by sequence methods. These five peptides of 4, 11, 14, 63, and 101 residues account for all 193 residues in Fragment A and provide overlaps for the tryptic peptides from the maleylated protein. Two additional peptides were isolated and shown to be shorter forms (8 and 10 residues) of the COOH-terminal cyanogen bromide peptide (11 residues).  相似文献   

14.
1. When ribonuclease T1 [EC 3.1.4.8] was treated with trypsin [EC 3.4.21.4] at pH 7.5 and 37 degrees, activity was lost fairly slowly. At higher temperatures, however, the rate of inactivation was markedly accelerated. The half life of the activity was about 2.5 h at 50 degrees and 1 h at 60 degrees. 3'-GMP and guanosine protected the enzyme significantly from tryptic inactivation. 2. Upon tryptic digestion at 50 degrees, the Lys-Tyr (41-42) and Arg-Val (77-78) bonds were cleaved fairly specifically, yielding two peptide fragments. One was a 36 residue peptide comprizing residues 42 to 77. The other was a 68 residue peptide composed of two peptide chains cross-linked by a disulfide bond between half-cystines -6 and -103, comprizing residues 1 to 41 and 78 to 104. 3. When the trinitrophenylated enzyme, in which the alpha-amino group of alanine-1 and the episolone-amino group of lysine 41 were selectively modified, was treated with trypsin at 37 degrees, the activity was lost fairly rapidly with a half life of about 4 h. In this case, tryptic hydrolysis occurred fairly selectively at the single Arg-Val bond. Thus the enzyme could be inactivated by cleavage of a single peptide bond in the molecule, an indication of the importance of the peptide region involving the single arginine residue at position 77 in the activity of ribonuclease T1.  相似文献   

15.
The complete amino acid sequence of rabbit muscle phosphoglucomutase   总被引:14,自引:0,他引:14  
The complete amino acid sequence of rabbit muscle phosphoglucomutase has been determined by isolating the 11 peptide fragments produced by the cyanogen bromide cleavage reaction and subjecting these to automated sequencing procedures. Products produced by treatment of some of these fragments with hydroxylamine, iodosobenzoic acid, mild acid, cyanogen bromide in formic and heptafluorobutyric acids, Staphylococcus aureus V8 protease, and trypsin (with or without blocking at lysine residues) were used to complete the sequence for each of the cyanogen bromide fragments. The cyanogen bromide fragments were ordered by isolating the four tryptic peptides produced by a limited tryptic digest of the native enzyme in the presence of its substrates and its bivalent metal ion activator, Mg2+, degrading these by means of trypsin, after blocking digestion at lysine residues, and isolating and identifying all fragments thus produced that contained 10 or more residues. The 561-residue sequence thus obtained is one of the longest that has been determined by chemical means. There is excellent agreement between this sequence and published compositions after appropriate normalization. The absorbance of the enzyme is about 7.0 at 278 nm for a 1% solution; this value is 9% lower than that previously used.  相似文献   

16.
Specific chemical cleavage of human placental and porcine muscle glucosephosphate isomerases at three amino peptide bonds of cysteinyl residues with 2-nitro-5-thiocyanobenzoic acid was achieved. Four primary peptides were generated from the cyanylated human glucosephosphate isomerase, indicating the quantitative cleavage of this enzyme. Four primary plus six overlap peptides were obtained from the cleavage of the swine muscle enzyme. The peptides were separated by SDS-polyacrylamide gel electrophoresis and eluted from the gels. Amino acid and carboxyl terminal analyses of the eluted peptides have permitted the alignment of these peptides with respect to the native polypeptide chain. The analysis of the enzyme which had been specifically covalently labeled at the essential lysine and histidine residues of the active center revealed that the active-site histidine and lysine residues are located on two distinct peptides with molecular weights of 27,500 and 14,000, respectively.  相似文献   

17.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

18.
As a part of the overall strategy for determining the complete covalent structure of the papain-solubilized portion of the heavy chain of the human histocompatibility antigen HLA-B7, the protein was dissected into various fragments by a combination of partial acid hydrolysis and cyanogen bromide cleavage. After purification by chromatographic procedures, these fragments have been used as a source for tryptic and chymotryptic peptides. Thirty-three major tryptic and twenty-two major chymotryptic peptides were purified in nanomole amounts and their amino acid compositions determined. These peptides account for the whole extent of the polypeptide chain with the exception of the amino-terminal CNBr pentapeptide. They provide the basis for the formal alignment of the acid cleavage and cyanogen bromide fragments of the molecule as well as the source material for the elucidation of the primary structure of the HLA-B7 heavy chain.  相似文献   

19.
The complete amino acid sequence of a peptic fragment (Pep M5) of the group A streptococcal type 5 M protein, the antiphagocytic cell surface molecule of the bacteria, is described. This fragment, comprising nearly half of the native M molecule, is biologically active in that it has the ability to interact with opsonic antibodies as well as to evoke such an antibody response in rabbits. The sequence of Pep M5 was determined by automated Edman degradations of the uncleaved molecule and its enzymatically derived peptides. The primary peptides for Edman degradation were the arginine peptides obtained by tryptic digestion. The tryptic cleavage of Pep M5 was limited to the arginyl peptide bonds by derivatizing the epsilon-amino groups of lysine residues by reductive dihydroxypropylation. The overlapping peptides were generated by digestion of the unmodified Pep M5 with chymotrypsin, V8 protease, and subtilisin. The sequence thus established for the Pep M5 molecule consists of a total of 197 residues (Mr = 22,705). The Pep M5 protein contains some identical, or nearly so, repeating sequences: four 7-residue segments and two 10-residue segments. However, extensive sequence repeats of the kind previously reported within the partial sequence of another M protein serotype, namely Pep M24, were absent. The Pep M5 sequence is distinct from, but exhibits some homology with, the partial sequences of two other M protein serotypes, namely, Pep M6 and Pep M24. Furthermore, the 7-residue periodicity of the nonpolar and charged residues, an alpha-helical coiled-coil structural characteristic that was previously observed within the partial sequences of M proteins, was found to extend over a significant part of the Pep M5 sequence. The implication of these results to the function and immunological diversity in M proteins is discussed.  相似文献   

20.
The reversible inhibition of the sarcoplasmic-reticulum calcium-transport enzyme by pressure at room temperature is accompanied by a significant enhancement of the accessibility of the enzyme to tryptic cleavage dependent on the presence of calcium. The calcium-transport enzyme activity was monitored with dinitrophenyl phosphate as substrate. Pressure in the range 0.1-100.0 MPa affects trypsin cleavage of the control substrate N-alpha-benzoyl-L-arginine-4-nitroanilide hydrochloride little in the presence and absence of calcium. In contrast, application of 100.0 MPa to the calcium-transport enzyme at room temperature accelerates subsequent tryptic cleavage at the T2 but not at the T1 cleavage site [C. J. Brandl et al. (1986) Cell 44, 597-607]. Pressure application during tryptic digestion likewise solely affects cleavage at T2 which proceeds slowly in the absence but rapidly in the presence of calcium. At atmospheric pressure in the absence of calcium and at high pressure in the absence and presence of calcium new cleavage sites are exposed giving rise to new subfragments B1-3 in addition to the established peptides A1 and A2. Under pressure and in the presence of calcium, A1 and A2 rapidly disappear indicating the presence of calcium-binding sites in these peptides. In contrast, the B1-3 peptides which are most likely derivates of the B fragment accumulate in the presence and absence of calcium. In contrast to tryptic cleavage at atmospheric pressure, tryptic cleavage of the A as well as the B fragment tends to completion under pressure. In parallel to the disappearance of the A and B fragments calcium-dependent substrate hydrolysis vanishes. Computation of activation volumes for pressure-induced reversible enzyme inhibition and for tryptic cleavage furnished closely related volumes of opposite signs of 20-40 ml/mol and 80-100 ml/mol in the ranges 0.1-40.0 MPa and 40.0-100.0 MPa, respectively. Thus pressure produces reversible changes in the calcium-transport enzyme which activates and modifies tryptic-cleavage patterns at the T2 site of the A segment and at sites in its subfragments in the presence of calcium, i.e. if the enzyme residues in its E1 state. In contrast tryptic cleavage of the B fragment is accelerated by pressure independently of the presence of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号