首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The E. coli DNA photolyase is a flavoprotein that catalyzes the photoreversal of pyrimidine dimers. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and repairs the dimer upon absorbing a photon in the 300-600 nm range. The rate and equilibrium constants for the light-independent reaction were determined before, using randomly modified substrates that contained T mean value of T, T mean value of C and C mean value of C dimers in random sequence surrounding. In this paper we have determined these constants for a defined substrate (a 43 bp oligomer containing a T mean value of T dimer) using the gel retardation assay. We find that: the equilibrium constant and the off rate obtained with this substrate by this technique are similar to those obtained with randomly modified DNA using filter binding and flash photolysis techniques. the off rate with the defined substrate is heterogeneous indicating heterogeneity in the enzyme population or in the enzyme-substrate complexes, and the enzyme has 7.5 X 10(4)-fold higher affinity for pyrimidine dimer compared to non-dimer DNA nucleotides.  相似文献   

2.
Escherichia coli DNA photolyase was expressed as C-terminal 6x histidine-fused protein. Purification of His-tagged E. coli DNA photolyase was developed using immobilized metal affinity chromatography with Chelating Sepharose Fast Flow. By one-step affinity chromatography, approximate 4.6 mg DNA photolyase was obtained from 400 ml E. coli culture. The purified His-tagged enzyme was combined with two chromophors, FADH and MTHF. Using the oligonucleotide containing cyclobutane pyrimidine dimer as substrate, both reversed-phase high-performance liquid chromatography and size-exclusion high-performance liquid chromatography were developed to measure the enzyme activity. The enzyme was found to be able to repair the cyclobutane pyrimidine dimer with the turnover rate of 2.4 dimers/photolyase molecule/min.  相似文献   

3.
Mechanism of damage recognition by Escherichia coli DNA photolyase   总被引:11,自引:0,他引:11  
Escherichia coli DNA photolyase binds to DNA containing pyrimidine dimers with high affinity and then breaks the cyclobutane ring joining the two pyrimidines of the dimer in a light- (300-500 nm) dependent reaction. In order to determine the structural features important for this level of specificity, we have constructed a 43 base pair (bp) long DNA substrate that contains a thymine dimer at a unique location and studied its interaction with photolyase. We find that the enzyme protects a 12-16-bp region around the dimer from DNase I digestion and only a 6-bp region from methidium propyl-EDTA-Fe (II) digestion. Chemical footprinting experiments reveal that photolyase contacts the phosphodiester bond immediately 5' and the 3 phosphodiester bonds immediately 3' to the dimer but not the phosphodiester bond between the two thymines that make up the dimer. Methylation protection and interference experiments indicate that the enzyme makes major groove contacts with the first base 5' and the second base 3' to the dimer. These data are consistent with photolyase binding in the major groove over a 4-6-bp region. However, major groove contacts cannot be of major significance in substrate recognition as the enzyme binds equally well to a thymine dimer in a 44-base long single strand DNA and protects a 10-nucleotide long region around the dimer from DNase I digestion. It is therefore concluded that the unique configuration of the phosphodiester backbone in the strand containing the pyrimidine dimer, as well as the cyclobutane ring of the dimer itself are the important structural determinants of the substrate for recognition by photolyase.  相似文献   

4.
Y F Li  A Sancar 《Biochemistry》1990,29(24):5698-5706
Escherichia coli DNA photolyase repairs pyrimidine dimers by a photoinduced electron-transfer reaction. The enzyme binds to UV-damaged DNA independent of light (the dark reaction) and upon absorbing a 300-500-nm photon breaks the cyclobutane ring of the dimer (the light reaction) and thus restores the DNA. No structural information on the enzyme is available at present. However, comparison of the sequences of photolyases from five different organisms has identified highly conserved regions of homology. These regions are presumably involved in chromophore (flavin and folate) and substrate binding or catalysis. Trp277 (W277) in E. coli photolyase is conserved in all photolyases sequenced to date. We replaced this residue with Arg, Glu, Gln, His, and Phe by site-specific mutagenesis. Properties of the mutant proteins indicate that W277 is involved in binding to DNA but not in chromophore binding or catalysis. Of particular significance is the finding that compared to wild type W277R and W277E mutants have about 300- and 1000-fold lower affinity, respectively, for substrate but were indistinguishable from wild-type enzyme in their photochemical and photocatalytic properties.  相似文献   

5.
The effect of purified Escherichia coli DNA photolyase on the UV light-induced pyrimidine-pyrimidone (6-4) photoproduct and cyclobutane pyrimidine dimer was investigated in vitro using enzyme purified from cells carrying the cloned phr gene (map position, 15.7 min). Photoproducts were examined both as site-specific lesions in end-labeled DNA and as chromatographically identified products in uniformly labeled DNA. E. coli DNA photolyase removed cyclobutane dimers but had no activity on pyrimidine-pyrimidone (6-4) photoproducts. Photoreactivation can therefore be used to separate the biological effects of these two UV light-induced molecular lesions.  相似文献   

6.
Human cell free extract prepared by the method of Manley et al. (1980) carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunit(s) of human excision nuclease.  相似文献   

7.
Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases.  相似文献   

8.
Cyclobutane pyrimidine dimers were quantified at the sequence level after irradiation with solar ultraviolet (UVB) and nonsolar ultraviolet (UVC) light sources. The yield of photoproducts at specific sites was dependent on the nucleotide composition in and around the potential lesion as well as on the wavelength of ultraviolet light used to induce the damage. Induction was greater in the presence of 5' flanking pyrimidines than purines; 5' guanine inhibited induction more than adenine. UVB irradiation increased the induction of cyclobutane dimers containing cytosine relative to thymine homodimers. At the single UVC and UVB fluences used, the ratio of thymine homodimers (T mean value of T) to dimers containing cytosine (C mean value of T, T mean value of C, C mean value of C) was greater after UVC compared to UVB irradiation.  相似文献   

9.
M Liuzzi  M Weinfeld  M C Paterson 《Biochemistry》1987,26(12):3315-3321
The UV endonucleases [endodeoxyribonuclease (pyrimidine dimer), EC 3.1.25.1] from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. We have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV- (4 kJ/m2, 254 nm) treated, [3H]thymine-labeled poly(dA).poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical- (5 kJ/m2, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. Our data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. Our results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.  相似文献   

10.
ABC excinuclease of Escherichia coli removes 6-4 photoproducts and pyrimidine dimers from DNA by making two single strand incisions, one 8 phosphodiester bonds 5' and another 4 or 5 phosphodiester bonds 3' to the lesion. We describe in this communication a method, which utilizes DNA photolyase from E. coli, pyrimidine dimer endonucleases from M. luteus and bacteriophage T4, and alkali hydrolysis, for analyzing the ABC excinuclease incision pattern corresponding to each of these photoproducts in a DNA fragment. On occasion, ABC excinuclease does not incise DNA exclusively 8 phosphodiester bonds 5' or 4 or 5 phosphodiester bonds 3' to the photoproduct. Both the nature of the adduct (6-4 photoproduct or pyrimidine dimer) and the sequence of neighboring nucleotides influence the incision pattern of ABC excinuclease. We show directly that photolyase stimulates the removal of pyrimidine dimers (but not 6-4 photoproducts) by the excinuclease. Also, photolyase does not repair CC pyrimidine dimers efficiently while it does repair TT or TC pyrimidine dimers.  相似文献   

11.
Xu L  Mu W  Ding Y  Luo Z  Han Q  Bi F  Wang Y  Song Q 《Biochemistry》2008,47(33):8736-8743
Escherichia coli DNA photolyase repairs cyclobutane pyrimidine dimer (CPD) in UV-damaged DNA through a photoinduced electron transfer mechanism. The catalytic activity of the enzyme requires fully reduced FAD (FADH (-)). After purification in vitro, the cofactor FADH (-) in photolyase is oxidized into the neutral radical form FADH (*) under aerobic conditions and the enzyme loses its repair function. We have constructed a mutant photolyase in which asparagine 378 (N378) is replaced with serine (S). In comparison with wild-type photolyase, we found N378S mutant photolyase containing oxidized FAD (FAD ox) but not FADH (*) after routine purification procedures, but evidence shows that the mutant protein contains FADH (-) in vivo as the wild type. Although N378S mutant photolyase is photoreducable and capable of binding CPD in DNA, the activity assays indicate the mutant protein is catalytically inert. We conclude that the Asn378 residue of E. coli photolyase is crucial both for stabilizing the neutral flavin radical cofactor and for catalysis.  相似文献   

12.
A new broad-host-range plasmid, pSL1211, was constructed for the over-expression of genes in Synechocystis sp. strain PCC 6803. The plasmid was derived from RSF1010 and an Escherichia coli over-expression plasmid, pTrcHisC. Over-expressed protein is made with a removable N-terminal histidine tag. The plasmid was used to over-express the phrA gene and purify the gene product from Synechocystis sp. strain PCC 6803. PhrA is the major ultraviolet-light-resistant factor in the cyanobacterium. The purified PhrA protein exhibited an optical absorption spectrum similar to that of the cyclobutane pyrimidine dimer (CPD) DNA photolyase from Synechocuccus sp. strain PCC 6301 (Anacystis nidulans). Mass spectrometry analysis of PhrA indicated that the protein contains 8-hydroxy-5-deazariboflavin and flavin adenine dinucleotide (FADH2) as cofactors. PhrA repairs only cyclobutane pyrimidine dimer but not pyrimidine (6-4) pyrimidinone photoproducts. On the basis of these results, the PhrA protein is classified as a class I, HDF-type, CPD DNA photolyase.  相似文献   

13.
The cyclobutane pyrimidine dimer (CPD) is a major type of DNA damage induced by ultraviolet B (UVB) radiation. CPD photolyase, which absorbs blue/UVA light as an energy source to monomerize dimers, is a crucial factor for determining the sensitivity of rice (Oryza sativa) to UVB radiation. Here, we purified native class II CPD photolyase from rice leaves. As the final purification step, CPD photolyase was bound to CPD-containing DNA conjugated to magnetic beads and then released by blue-light irradiation. The final purified fraction contained 54- and 56-kD proteins, whereas rice CPD photolyase expressed from Escherichia coli was a single 55-kD protein. Western-blot analysis using anti-rice CPD photolyase antiserum suggested that both the 54- and 56-kD proteins were the CPD photolyase. Treatment with protein phosphatase revealed that the 56-kD native rice CPD photolyase was phosphorylated, whereas the E. coli-expressed rice CPD photolyase was not. The purified native rice CPD photolyase also had significantly higher CPD photorepair activity than the E. coli-expressed CPD photolyase. According to the absorption, emission, and excitation spectra, the purified native rice CPD photolyase possesses both a pterin-like chromophore and an FAD chromophore. The binding activity of the native rice CPD photolyase to thymine dimers was higher than that of the E. coli-expressed CPD photolyase. These results suggest that the structure of the native rice CPD photolyase differs significantly from that of the E. coli-expressed rice CPD photolyase, and the structural modification of the native CPD photolyase leads to higher activity in rice.  相似文献   

14.
G Payne  A Sancar 《Biochemistry》1990,29(33):7715-7727
Escherichia coli DNA photolyase mediates photorepair of pyrimidine dimers occurring in UV-damaged DNA. The enzyme contains two chromophores, 1,5-dihydroflavin adenine dinucleotide (FADH2) and 5,10-methenyltetrahydrofolylpolyglutamate (MTHF). To define the roles of the two chromophores in the photochemical reaction(s) resulting in DNA repair and the effect of DNA structure on the photocatalytic step, we determined the absolute action spectra of the enzyme containing only FADH2 (E-FADH2) or both chromophores (E-FADH2-MTHF), with double- and single-stranded substrates and with substrates of different sequences in the immediate vicinity of the thymine dimer. We found that the shape of the action spectrum of E-FADH2 matches that of the absorption spectrum with a quantum yield phi (FADH2) = 0.69. The action spectrum of E-FADH2-MTHF is also in a fairly good agreement with the absorption spectrum with phi (FADH2-MTHF) = 0.59. From these values and from the previously established properties of the two chromophores, we propose that MTHF transfers energy to FADH2 with a quantum yield of phi epsilon T = 0.8 and that 1FADH2 singlet transfers an electron to or from the dimer with a quantum yield phi ET = 0.69. The chemical nature of the chromophores did not change after several catalytic cycles. The enzyme repaired a thymine dimer in five different sequence contexts with the same efficiency. Similarly, single- and double-stranded DNAs were repaired with the same overall quantum yield.  相似文献   

15.
Escherichia coli endodeoxyribonuclease V acts at many sites of damage in duplex DNA, including apurinic/apyrimidinic sites, lesions induced by ultraviolet light which are not pyrimidine dimers, adducts of 7-bromomethylbenz[a]anthracene, and, as demonstrated earlier (Gates, F. T., and Linn, S. (1977a) J. Biol. Chem. 252. 1647-1653), it degrades uracil-containing duplex DNA most efficiently. The cleavage rate increases with increasing substitution of uracil for thymine in T5 DNA, with a replacement of one-eight of thymine generating the apparent maximum cleavage rate. However, the apparent reaction limit with DNA containing 3.8% of thymine replaced by uracil corresponds to cleavage at only 6% of the dUMP residues. Evidently, the enzyme recognizes some peculiarities of abnormal DNA structure, but not simply distortions, since some lesions, including pyrimidine dimers, are not substrates. Endonuclease V generates double strand breaks in a constant ratio to single strand nicks, regardless of the substrate. It degrades DNA processively, completing the digestion of one substrate molecule before proceeding to the next. The enzyme also appears to act cooperatively. Cleavage at methylbenz[a]anthracene adducts is usually or always 5' to the lesion. Endonuclease V seems well suited to act as a DNA repair enzyme, surveying the genome for structural distortions generated by lesions for which specific repair systems might not exist.  相似文献   

16.
Photolyase is a light-dependent enzyme that repairs pyrimidine dimers in DNA. Two types of photolyases have been found in frog Xenopus laevis, one for repairing cyclobutane pyrimidine dimers (CPD photolyase) and the other for pyrimidine-pyrimidone (6-4)photoproduct [(6-4)photolyase]. However, little is known about the former type of the Xenopus photolyases. To characterize this enzyme and its expression profiles, we isolated the entire coding region of a putative CPD photolyase cDNA by extending an EST (expressed sequence tag) sequence obtained from the Xenopus database. Nucleotide sequence analysis of the cDNA revealed a protein of 557 amino acids with close similarity to CPD photolyase of rat kangaroo. The identity of this cDNA was further established by the molecular mass (65 kDa) and the partial amino acid sequences of the major CPD photolyase that we purified from Xenopus ovaries. The gene of this enzyme is expressed in various tissues of Xenopus. Even internal organs like heart express relatively high levels of mRNA. A much smaller amount was found in skin, although UV damage is thought to occur most frequently in this tissue. Such expression profiles suggest that CPD photolyase may have roles in addition to the photorepair function.  相似文献   

17.
Cyclobutane type pyrimidine dimers are the most common product of UV irradiation of DNA. This potentially lethal damage is reversed by photolyase enzymes, which cleave the cyclobutane ring of the pyrimidine dimer by electron transfer from excited state of the flavin cofactor of the enzyme to the dimer. Several studies have suggested that the energy-wasting revers electron transfer process may be kinetically competitive with a ring-opening. One of the principal factors governing the rates of the splitting reaction is the degree of strain in the cyclobutane ring, which is directly reflected in the enthalpy of the splitting process. Hence, the present work utilizes the MNDO-PM3 method to examine the influence of base composition and stereochemistry on the enthalpy of cleavage of the cyclobutane ring of various pyrimidine dimers.  相似文献   

18.
A high-performance liquid chromatography method for the assay of Escherichia coli photolyase activity was developed. When cis-syn cyclobutane pyrimidine dimer was used as substrate, the Michaelis constant (K(m)) value for the photolyase activity was 100 nM. The linear range of the calibration curve of the photolyase activity was 0.026-6.64 microU/assay tube. The correlation coefficient for this linearity was 0.998. The limit of detection (S/N = 3) was 26 nU/assay tube. The photolyase activity was increased 1.6-fold in the presence of 5,10-methenyltetrahydrofolic acid in the enzyme reaction mixture.  相似文献   

19.
We have examined the mutagenic properties in E. coli of single stranded vectors containing a uniquely placed cis-syn or trans-syn uracil-uracil cyclobutane dimer in the sequence 5' GCAAGUUGGAG 3', and compared these with the properties of the corresponding T-T dimers in the same sequence context. The frequencies with which U-U and T-T photoproducts were bypassed were similar in SOS induced cells, and each induced similar frequencies of mutations. However, although both U-U and T-T cis-syn dimers showed a preference for misincorporation in about 5-7% of the replication products, with T or G being incorporated in place of A, the ratios of these events differed, being > 4:1 for T-T cis-syn, but only 2:1 for U-U cis-syn. A shift towards G insertion opposite dimerized uracil was also found with the trans-syn dimers, but the difference was greater; T and G were misincorporated opposite the U-U trans-syn dimer in a ratio of 1:2, compared with 4:1 for its T-T counterpart. In addition, the U-U dimer induced only nucleotide substitutions, unlike the T-T photoproduct which induced single nucleotide deletions as well as substitutions. We conclude that even relatively minor differences in photoproduct structure, such as the presence of a methyl group at C-5, can alter mutational properties, and that such properties cannot depend only on the attributes of the DNA polymerase. Neither the efficiency of bypass, the error frequency nor the mutation spectrum of either U-U isomer is influenced by DNA uracil glycosylase. In vitro, the U-U cis-syn dimer is a substrate for DNA photolyase, but not for the glycosylase.  相似文献   

20.
Among the unexpected chemistries that can be catalyzed by nucleic acid enzymes is photochemistry. We have reported the in vitro selection of a small, cofactor-independent deoxyribozyme, UV1C, capable of repairing thymine dimers in a DNA substrate, most optimally with light at a wavelength of >300 nm. We hypothesized that a guanine quadruplex functioned both as a light antenna and an electron source for the repair of the substrate within the enzyme-substrate complex. Here, we report structural and mechanistic investigations of that hypothesis. Contact-crosslinking and guanosine to inosine mutational studies reveal that the thymine dimer and the guanine quadruplex are positioned close to each other in the deoxyribozyme-substrate complex, and permit us to refine the structure and topology of the folded deoxyribozyme. In exploring the substrate utilization capabilities of UV1C, we find it to be able to repair uracil dimers as well as thymine dimers, as long as they are present in an overall deoxyribonucleotide milieu. Some surprising similarities with bacterial CPD photolyase enzymes are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号