首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A phylogenetic analysis of Violaceae is presented using sequences from rbcL, atpB, matK and 18S rDNA from 39 species and 19 genera. The combined analysis of four molecular markers resulted in only one most parsimonious tree, and 33 of all 38 nodes within Violaceae are supported by a bootstrap proportion of more than 50%. Fusispermum is in a basal-most position and Rinorea, Decorsella, Rinoreocarpus and the other Violaceae are successively diverged. The monogeneric subfamily Fusispermoideae is supported, and it shares a number of plesiomorphies with Passifloraceae (a convolute petal aestivation, actinomorphic flowers and connate filaments). The other monogeneric subfamily Leonioideae is sunken within the subfamily Violoideae and is sister to Gloeospermum, sharing some seed morphological characteristics. The present molecular phylogenetic analysis suggests that the convolute, apotact and quincuncial petal aestivation is successively derived within the family. The evolutionary trends of the other morphological characteristics, such as a filament connation, the number of carpels and floral symmetry, are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A phylogenetic analysis of Euphorbiaceae sensu stricto is presented using sequences from rbcL, atpB, matK and 18S rDNA from 85 species and 83 genera. The combined analysis of four molecular markers resulted in only one most parsimonious tree and also generated new supported clades, which include Euphorbioideae + Acalyphoideae s.s., subclades A2 + A3, subclades A5 + A6 and a clade uniting subclades A2–A8 within Acalyphoideae s.s. A palisadal exotegmen is a possible synapomorphy for all the Euphorbiaceae, except for the subfamily Peroideae. The presence of vascular bundles in the inner integument and a thick inner integument were shown to be synapomorphies for the clade of inaperturate and articulated crotonoids and for the large clade of Euphorbioideae, Acalyphoideae s.s., inaperturate and articulated crotonoids, respectively. Characters of the aril and vascular bundles in the outer integument are discussed. The selected embryological characters were seen to be highly correlated with the molecular phylogeny. When the results of molecular phylogenetic analysis of a previous study and this study were adjusted along with the selected embryological characters, all clades within Euphorbiaceae were supported except for a clade comprising Euphorbioideae + Acalyphoideae s.s. + inaperturate crotonoids + articulated crotonoids + Adenoclineae s.l. and a clade uniting subclades A4–A8 within Acalyphoideae s.s. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Sequences of chloroplast gene rbcL and partial nuclear 26S rDNA were used to evaluate phylogenetic relationships of Asteropyrum. Four primary clades were recognized in Ranunculaceae, corresponding to subfamilies Hydrastidoideae, Coptidoideae, Thalictroideae, and Ranunculoideae. Our results place Asteropyrum in Ranunculoideae, sister to the tribe Actaeeae, which includes Beesia, Cimicifuga, and Eranthis. This is supported by chromosome characters, including chromosome size and basic number, and the stainability of prophase chromosomes and interphase nuclei. Our results do not support previous placements of Asteropyrum in either Coptidoideae or Thalictroideae. Considering its uniqueness in a few characters (e.g. simple peltate leaves, accumulating benzylisoquinoline alkaloids, vessel elements with only typical scalariform perforation plates), we recognize Asteropyrum as a monotypic tribe of Ranunculoideae, Asteropyreae W. T. Wang et C. Y. Chang.  相似文献   

4.
Small subunit ribosomal DNA sequences of all species of the basidiomycetous anamorphic yeast genusTrichosporon were determined, and phylogenetic trees were constructed by the neighbor-joining and maximum likelihood methods. The sequence data showed that, with the exception ofT. pullulans, the genus is monophyletic, although its members have two different major ubiquinones, Q9 and Q10. The genus can be divided phylogenetically into three major clusters. Species with Q10 as the major ubiquinone constitute a single cluster, while those with Q9 form two clusters.Trichosporon pullulans was phylogenetically distinct from other taxa of the genus. It is located in a cluster containingCystofilobasidium capitatum, Mrakía frigida, Xanthophyllomyces dendrorhous and three species ofUdeniomyces. This result sugests thatT. pullulans does not belong to the genusTrichosporon.  相似文献   

5.
6.
With about 60,000 described species, Curculionoidea represent the most species-rich superfamily in the animal kingdom. The immense diversity apparently creates difficulties in the reconstruction of the phylogenetic relationships. Independent morphological studies have led to very different classifications. This study is based on molecular data from two independent molecular sources, the 16S and 18S rDNA. Sensitivity analyses were conducted for the sequence alignment (gap costs were varied) as well as the phylogenetic reconstruction algorithms and some of their parameters. The higher-level relationships reconstructed within Curculionoidea are sensitive to alignment and reconstruction method. Nemonychidae or Oxycorynidae+Belidae were found to be sister to all remaining Curculionoidea in many analyses. The 16S rDNA sequence data (obtained from 157 species) corroborate many tribes and genera as monophyletic. It is observed that the phylogenetic reconstruction of genera with specific genetic features such as polyploidy and parthenogenetic reproduction is difficult in weevils. The curculionid subfamily Lixinae appears monophyletic. A new monophylum consisting of Entiminae, Hyperinae, Cyclominae, Myllorhinus plus possibly the Cossoninae is distinguished and we call it Entiminae s.l. For most other subfamilies and families homoplasy concealed the phylogenetic signal (due to saturation of the 16S sequences), or the species sampling was insufficient, although our sampling scheme was rather broad. We observed that although data from one source can easily be misleading (16S) or hardly informative (18S), the combination of the two independent data sets can result in useful information for such a speciose group of organisms. Our study represents the most thorough analysis of molecular sequence data of the Curculionoidea to date and although the phylogenetic results appear less stable than expected, they reflect the information content of these sequence data realistically and thus contribute to the total knowledge about the phylogeny of the Curculionoidea.  相似文献   

7.
We present phylogenetic analyses of Malpighiales, which are poorly understood with respect to relationships within the order, using sequences from rbcL, atpB, matK and 18SrDNA from 103 genera in 23 families. From several independent and variously combined analyses, a four-gene analysis using all sequence data provided the best resolution, resulting in the single most parsimonious tree. In the Malpighiales [bootstrap support (BS) 100%], more than eight major clades comprising a family or group of families successively diverged, but no clade containing more than six families received over 50% BS. Instead, ten terminal clades that supported close relationships between and among families (>50% BS) were obtained, between, for example, Balanopaceae and Chrysobalanaceae; Lacistemataceae and Salicaceae; and Phyllanthaceae and Picrodendraceae. The monophyly of Euphorbiaceae sens. str. were strongly supported (BS 100%), but its sister group was unclear. Euphorbiaceae sens. str. comprised two basally diverging clades (BS 100%): one leading to the Clutia group (Chaetocarpus, Clutia, Pera and Trigonopleura), and the other leading to the rest of the family. The latter shared a palisadal, instead of a tracheoidal exotegmen as a morphological synapomorphy. While both Acalyphoideae (excluding Dicoelia and the Clutia group) and Euphorbioideae are monophyletic, Crotonoideae were paraphyletic, requiring more comprehensive analyses.  相似文献   

8.
Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.  相似文献   

9.
The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.  相似文献   

10.
The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as “true”). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron.We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species.  相似文献   

11.
The plastid coding rbcL and non-coding trnLF regions of 53 of 55 southern African Zygophyllum species were sequenced and used to evaluate the phylogenetic relationships within the southern African representatives of the genus. Published sequences of the same gene regions of Australian, Asian and North African Zygophyllum species were included to assess the relationships of the species from these regions to the southern African species. The addition of Z. stapffii from Namibia, found to be conspecific with Z. orbiculatum from Angola, lead to a greatly resolved tree. The molecular results were largely congruent with a recent sectional classification of the southern African species and supported their subdivision into subgenera Agrophyllum and Zygophyllum. Reconstruction of the character evolution of capsule dehiscence, seed attachment and seed mucilage showed that these characters allowed a division of southern African species into the two subgenera but that this could not be applied to species occurring elsewhere. Other morphological characters were found to vary and unique character combinations, rather than unique characters, were found to be of systematic value in sectional delimitation. The study suggests that repeated radiations from the horn of Africa to southern Africa and Asia and back lead to the present distribution of the taxa in the subfamily Zygophylloideae. Although this study supports some of the recent taxonomic changes in the group, the unresolved relationships between the proposed genera Tetraena and Roepera and those retained as Zygophyllum species suggest that changes to the taxonomy may have been premature.  相似文献   

12.
The sequences of ITS regions in 30 species and two groups of the genusPythium were resolved. In the phylogenetic trees, the species were generally divided into two clusters, referred to here as the F and S groups. The species in the two groups correspond in terms of their sporangial morphology, with the F group being filamentous/lobulate and the S group being spherical. Genetic divergence within the F group was lower than that within the S group. Other morphological characteristics such as oogonial structure and sexual nature appeared to be unrelated to the groupings in these trees. An alignment analysis revealed common sequences to all the species and arrangements specific to each F or S group. It was found that the ITS region was a good target in designing species-specific primers for the identification and detection ofPythium species. In the tree based on 5.8S rDNA sequences, oomycetes are distantly related to other fungi but separated from algae in Chromista.  相似文献   

13.
张蒙  黄敏 《昆虫分类学报》2012,34(3):509-519
测定了中国Singhardina亚属15个代表种的核糖体28S基因D2区和线粒体16S基因、COI基因部分序列,分别采用最大简约法、最大似然法和贝叶斯法构建分子系统树。系统发育树显示了相似的拓扑结构,明晰了各分支间的关系。首次探讨了中国Singhardina亚属4个种团间的系统发育关系。结果显示,Singhardina亚属构成了1个独立支系,代表1个单系群。本研究首次提出种团Eurhadina(Singhardina)rubra,并推测该种团可能是Singhardina亚属中最原始的种团。种团Eurhadina(Singhardina)robusta和E.(Singhardina)mamata为姐妹群。种团E.(Singhardina)vittata不能从种团E.(Singhardina)punjabensis中分出得到了分子数据的支持。  相似文献   

14.
Chromosome evolution (including polyploidy, dysploidy, and structural changes) as well as hybridization and introgression are recognized as important aspects in plant speciation. A suitable group for investigating the evolutionary role of chromosome number changes and reticulation is the medium-sized genus Melampodium (Millerieae, Asteraceae), which contains several chromosome base numbers (x = 9, 10, 11, 12, 14) and a number of polyploid species, including putative allopolyploids. A molecular phylogenetic analysis employing both nuclear (ITS) and plastid (matK) DNA sequences, and including all species of the genus, suggests that chromosome base numbers are predictive of evolutionary lineages within Melampodium. Dysploidy, therefore, has clearly been important during evolution of the group. Reticulate evolution is evident with allopolyploids, which prevail over autopolyploids and several of which are confirmed here for the first time, and also (but less often) on the diploid level. Within sect. Melampodium, the complex pattern of bifurcating phylogenetic structure among diploid taxa overlain by reticulate relationships from allopolyploids has non-trivial implications for intrasectional classification.  相似文献   

15.
To clarify the relationship among coelacanths, lungfishes, and tetrapods, the amino acid sequences deduced from the nucleotide sequences of mitochondrial cytochrome oxidase subunit I (COI) genes were compared. The phylogenetic tree of these animals, including the coelacanth Latimeria chalumnae and the lungfish Lepidosiren paradoxa, was inferred by several methods. These analyses consistently indicate a coelacanth/lungfish clade, to which little attention has been paid by previous authors with the exception of some morphologists. Overall evidence of other mitochondrial genes reported previously and the results of this study equally support the coelacanth/lungfish and lungfish/tetrapod clades, ruling out the coelacanth/tetrapod clade.Correspondence to: K. Watanabe 0592  相似文献   

16.
In the classical taxonomy, three Scomber species are distinguished: S. scombrus, S. australasicus, and S. japonicus. Yet, some fish taxonomists have recently recognized Scomber colias, inhabiting the Atlantic Ocean, as a separate species from S. japonicus, distributed in the Pacific Ocean. Such proposal was based on significant mitochondrial DNA divergence as well as great phenotypic variation among individuals from these two ocean basins. However, in the absence of nuclear DNA data this issue remains still controversial. In this study, a phylogenetic analysis of nuclear 5S rDNA sequences was performed. A total of 30 individuals of S. colias collected in the Atlantic and 34 specimens of S. japonicus from the Pacific were characterized. Moreover, nine individuals of Pacific S. australasicus and eight of Atlantic S. scombrus were included. Maximum likelihood, maximum parsimony, and neighbor-joining analyses revealed the presence of two well-supported distinct clades corresponding to S. colias and S. japonicus, respectively. Altogether, morphologic and genetic data are in agreement with the recognition of two different species, S. colias in the Atlantic, and S. japonicus in the Pacific.  相似文献   

17.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

18.
19.
To determine the evolutionary positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia, we obtained 18S rRNA sequences from 11 new taxa representing the major living orders and families of gymnosperms. With the published Chlamydomonas as an outgroup, phylogenetic analyses of our new data and available sequences indicate that (1) the Gnetales form a monophyletic group, which is an outgroup to the conifers, (2) the conifers are monophyletic, (3) Taxaceae, Cephalotaxaceae, Cupressaceae, and Taxodiaceae form a monophyletic group, (4) Amentotaxus is closer to Torreya than to Cephalotaxus, suggesting that Amentotaxus is better to be classified as a member of Taxaceae, (5) Phyllocladus, Dacrycarpus, Podocarpus, and Nageia form a monophyletic group, and (6) Pinaceae is an outgroup to the other families of conifers. Our finding that Phyllocladus is a sister group of the Podocarpaceae disagrees with the suggestion that the phylloclade of the genus is an ancient structure and that the genus is a terminal taxon within the Podocarpaceae. The genus Nageia is more closely related to Podocarpus than to Dacrycarpus and was derived from within the Podocarpaceae. In conclusion, our data indicate that in conifers, the uniovulate cone occurred independently in Taxacaeae and Cephalotaxaceae, and in Podocarpaceae after the three families separated from Pinaceae, and support the hypothesis that the uniovulate cone is derived from reduction of a multiovulate cone.Correspondence to: S.-M. Chaw  相似文献   

20.
In the present study, samples representing Orientobilharzia turkestanicum from cattle, sheep, cashmere goat and goat in Heilongjiang Province, China, were characterized and grouped genetically by sequences of internal transcribed spacer (ITS, including ITS-1 and ITS2) and 28S ribosomal DNA (28S rDNA). The ITS and 28S rDNA were amplified by polymerase chain reaction (PCR) and then sequenced and compared with that of other members of the Schistosomatidae available in GenBank™, and phylogenetic relationships between them were re-constructed using the neighbor-joining and maximum parsimony methods. The lengths of ITS-1, ITS-2 and 28S rDNA sequences for all O. turkestanicum samples from different hosts were 384 bp, 331 bp and 1304 bp, respectively. While the ITS-1 sequences of O. turkestanicum from each of the four different hosts, and ITS-2 of O. turkestanicum from cattle, sheep and cashmere goat were identical, respectively, the ITS-2 of O. turkestanicum from goat differed from that of O. turkestanicum from cattle, sheep and cashmere goat by one nucleotide. The 28S rDNA sequences of O. turkestanicum from sheep and cashmere goat were identical, but differed from that of O. turkestanicum from cattle and goat by two nucleotides, with the latter two also having identical 28S rDNA sequence. Phylogenetic analyses based on the combined sequences of the ITS-1 and ITS-2, or the 28S rDNA sequences placed O. turkestanicum within the genus Schistosoma, and it was phylogenetically closer to the African schistosome group than to the Asian schistosome group. These results should have implications for studying the origin and evolution of O. turkestanicum and other members of the Schistosomatidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号