首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

2.
Cyclic nucleotide monophosphate (cNMP) hydrolysis in bacteria and eukaryotes is brought about by distinct cNMP phosphodiesterases (PDEs). Since these enzymes differ in amino acid sequence and properties, they have evolved by convergent evolution. Cyclic NMP PDEs cleave cNMPs to NMPs, and the Rv0805 gene product is, to date, the only identifiable cNMP PDE in the genome of Mycobacterium tuberculosis. We have shown that Rv0805 is a cAMP/cGMP dual specificity PDE, and is unrelated in amino acid sequence to the mammalian cNMP PDEs. Rv0805 is a dimeric, Fe(3+)-Mn(2+) binuclear PDE, and mutational analysis demonstrated that the active site metals are co-ordinated by conserved aspartate, histidine and asparagine residues. We report here the structure of the catalytic core of Rv0805, which is distantly related to the calcineurin-like phosphatases. The crystal structure of the Rv0805 dimer shows that the active site metals contribute to dimerization and thus play an additional structural role apart from their involvement in catalysis. We also present the crystal structures of the Asn97Ala mutant protein that lacks one of the Mn(2+) co-ordinating residues as well as the Asp66Ala mutant that has a compromised cAMP hydrolytic activity, providing a structural basis for the catalytic properties of these mutant proteins. A molecule of phosphate is bound in a bidentate manner at the active site of the Rv0805 wild-type protein, and cacodylate occupies a similar position in the crystal structure of the Asp66Ala mutant protein. A unique substrate binding pocket in Rv0805 was identified by computational docking studies, and the role of the His140 residue in interacting with cAMP was validated through mutational analysis. This report on the first structure of a bacterial cNMP PDE thus significantly extends our molecular understanding of cAMP hydrolysis in class III PDEs.  相似文献   

3.
The crystal structure of the enzyme 3-isopropylmalate dehydrogenase (IPMDH) from Mycobacterium tuberculosis (LeuB, Mtb-IPMDH, Rv2995c) without substrate or co-factor was determined at 1.65 A resolution, which is the highest resolution reported for an IPMDH to date. The crystals contain two functional dimers in the asymmetric unit in an arrangement close to a tetramer of D2 symmetry. Despite the absence of a substrate or inhibitor bound to the protein, the structure of the monomer resembles the previously observed closed form of the enzyme more closely than the open form. A comparison with the substrate complex of IPMDH from Thiobacillus ferrooxidans and the co-factor complex of the Thermus thermophilus enzyme revealed a close relationship of the active-site architecture between the various bacterial enzymes. The inhibitor O-isobutenyl oxalylhydroxamate was found to bind to the active site of IPMDH in a mode similar to the substrate isopropylmalate.  相似文献   

4.
Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.  相似文献   

5.
6.
Glycogen branching enzyme (GlgB, EC 2.4.1.18) catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and subsequent transfer of cleaved oligosaccharide to form a new alpha-(1,6)-branch. A single glgB gene Rv1326c is present in Mycobacterium tuberculosis. The predicted amino acid sequence of GlgB of M. tuberculosis has all the conserved regions of alpha-amylase family proteins. The overall amino acid identity to other GlgBs ranges from 48.5 to 99%. The glgB gene of M. tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein was purified to homogeneity using metal affinity and ion exchange chromatography. The recombinant protein is a monomer as evidenced by gel filtration chromatography, is active as an enzyme, and uses amylose as the substrate. Enzyme activity was optimal at pH 7.0, 30 degrees C and divalent cations such as Zn2+ and Cu2+ inhibited activity. CD spectroscopy, proteolytic cleavage and mass spectroscopy analyses revealed that cysteine residues of GlgB form structural disulfide bond(s), which allow the protein to exist in two different redox-dependent conformational states. These conformations have different surface hydrophobicities as evidenced by ANS-fluorescence of oxidized and reduced GlgB. Although the conformational change did not affect the branching enzyme activity, the change in surface hydrophobicity could influence the interaction or dissociation of different cellular proteins with GlgB in response to different physiological states.  相似文献   

7.
Lysine epsilon-aminotransferase (LAT) is a PLP-dependent enzyme that is highly up-regulated in nutrient-starved tuberculosis models. It catalyzes an overall reaction involving the transfer of the epsilon-amino group of L-lysine to alpha-ketoglutarate to yield L-glutamate and alpha-aminoadipate-delta-semialdehyde. We have cloned and characterized the enzyme from Mycobacterium tuberculosisH37Rv. We report here the crystal structures of the enzyme, the first from any source, in the unliganded form, external aldimine with L-lysine, with bound PMP and with its C5 substrate alpha-ketoglutarate. In addition to interaction details in the active site, the structures reveal a Glu243 "switch" through which the enzyme changes substrate specificities. The unique substrate L-lysine is recognized specifically when Glu243 maintains a salt-bridge with Arg422. On the other hand, the binding of the common C5 substrates L-glutamate and alpha-ketoglutarate is enabled when Glu243 switches away and unshields Arg422. The structures reported here, sequence conservation and earlier mutational studies suggest that the "glutamate switch" is an elegant solution devised by a subgroup of fold type I aminotransferases for recognition of structurally diverse substrates in the same binding site and provides for reaction specificity.  相似文献   

8.
About 10% of the coding sequence of Mycobacterium tuberculosis corresponds to hitherto unknown members of the PE and PPE protein families which display significant sequence and length variation at their C-terminal region. It has been suggested that this could possibly represent a rich source of antigenic variation within the pathogen. We describe the purification and biophysical characterization of the recombinant PPE protein coded by hypothetical ORF Rv2430c, a member of the PPE gene family that was earlier shown to induce a strong B cell response. Expression of the recombinant PPE protein in Escherichia coli led to its localization in inclusion bodies and subsequent refolding using dialysis after its extraction from the same resulted in extensive precipitation. Therefore, an on-column refolding strategy was used, after which the protein was found to be in the soluble form. CD spectrum of the recombinant protein displayed predominantly alpha helical content (81%) which matched significantly with in silico and web-based secondary structure predictions. Furthermore, fluorescence emission spectra revealed that aromatic amino acids are buried inside the protein, which are exposed to aqueous environment under 8M urea. These results, for the first time, provide evidence on the structural features of PPE family protein which, viewed with its reported immunodominant characteristics, have implications for other proteins of the PE/PPE family.  相似文献   

9.
The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins.  相似文献   

10.
Nei2 (Rv3297) is a DNA Base Excision Repair (BER) glycosylase that is essential for survival of Mycobacterium tuberculosis in primates. We show that MtbNei2 is a bifunctional glycosylase that specifically acts on oxidized pyrimidine-containing single-stranded, double-stranded, 5’/3’ fork and bubble DNA substrates. MtbNei2 possesses Uracil DNA glycosylase activity unlike E. coli Nei. Mutational studies demonstrate that Pro2 and Glu3 located in the active site are essential for glycosylase activity of MtbNei2. Mutational analysis demonstrated that an unstructured C-terminal zinc finger domain that was important for activity in E. coli Nei and Fpg, was not required for the glycosylase activity of MtbNei2. Lastly, we screened the NCI natural product compound database and identified three natural product inhibitors with IC50 values ranging between 41.8 μM-92.7 μM against MtbNei2 in in vitro inhibition assays. Surface Plasmon Resonance (SPR) experiments showed that the binding affinity of the best inhibitor, NSC31867, was 74 nM. The present results set the stage for exploiting this important target in developing new therapeutic strategies that target Mycobacterial BER.  相似文献   

11.
Mycobacterium tuberculosis is an extremely successful intracellular pathogen that has evolved a broad spectrum of pathogenic mechanisms that enable its manipulation of host defense elements and its survival in the hostile environment inside phagocytes. Cellular influx into the site of mycobacterial entry is mediated by a variety of chemokines, including interleukin-8 (IL-8), and the innate cytokine network is critical for the development of an adaptive immune response and infection control. Using affinity chromatography, liquid chromatography electrospray ionization tandem mass spectrometry and surface plasmon resonance techniques, we identified M. tuberculosis AtsG arylsulphatase, bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyl transferase (GlmU) and S-adenosyl-L-homocysteine hydrolase (SahH) as the pathogen proteins that bind to human IL-8. The interactions of all of the identified proteins (AtsG, GlmU and SahH) with IL-8 were characterized by high binding affinity with KD values of 6.83x10-6 M, 5.24x10-6 M and 7.14x10-10 M, respectively. Furthermore, the construction of Mtb mutant strains overproducing AtsG, GlmU or SahH allowed determination of the contribution of these proteins to mycobacterial entry into human neutrophils. The significantly increased number of intracellularly located bacilli of the overproducing M. tuberculosis mutant strains compared with those of “wild-type” M. tuberculosis and the binding interaction of AtsG, GlmU and SahH proteins with human IL-8 may indicate that these proteins participate in the modulation of the early events of infection with tubercle bacilli and could affect pathogen attachment to target cells.  相似文献   

12.
Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY–MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.  相似文献   

13.
Shrivastava R  Ghosh AK  Das AK 《FEBS letters》2007,581(9):1903-1909
The two-component signal transduction system from Mycobacterium tuberculosis bears a unique three-protein system comprising of two putative histidine kinases (HK1 and HK2) and one response regulator TcrA. By sequence analysis, HK1 is found to be an adenosine 5'-triphosphate (ATP) binding protein, similar to the nucleotide-binding domain of homologous histidine kinases, and HK2 is a unique histidine containing phosphotransfer (HPt)-mono-domain protein. HK1 is expected to interact with and phosphorylate HK2. Here, we show that HK1 binds 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate monolithium trisodium salt and ATP with a 1:1 stoichiometric ratio. The ATPase activity of HK1 in the presence of HK2 was measured, and phosphorylation experiments suggested that HK1 acts as a functional kinase and phosphorylates HK2 by interacting with it. Further phosphorylation studies showed transfer of a phosphoryl group from HK2 to the response regulator TcrA. These results indicate a new mode of interaction for phosphotransfer between the two-component system proteins in bacteria.  相似文献   

14.
【目的】应用原核表达体系对结核分枝杆菌PPE蛋白家族Rv1168c进行高效表达,进一步进行蛋白纯化和结构分析。【方法】以结核分枝杆菌H37Rv基因组为模板,扩增Rv1168c基因,构建pET32a-Rv1168c重组质粒;转化重组质粒到大肠杆菌DH5α并在BL21(DE3)诱导表达,通过十二烷基硫酸钠-聚丙烯酰胺电泳(SDS-PAGE)鉴定Rv1168c在大肠杆菌中的表达情况;Ni-NTAHis﹡Bind Resin纯化重组蛋白Rv1168c;SDS-PAGE和质谱分析测定相对分子量后,用圆二色光谱(CD)和同源模建方法分析和检测重组蛋白Rv1168c的二级和三级结构。【结果】成功克隆了971bp的目的基因Rv1168c,并获得了高纯度的重组蛋白Rv1168c。重组蛋白的分子量为51.5kDa(含载体蛋白)。25℃时重组蛋白Rv1168c的二级结构包括34.4%α螺旋,33.7%β转角,31.9%无规则卷曲,它的三维模型显示为(β/α)5结构。【结论】成功得到高纯度的重组目的Rv1168c蛋白,并初步进行了结构分析,为进一步对Rv1168c结构和功能研究奠定了基础。  相似文献   

15.
Mycobacterium tuberculosis codes for an essential NAD+-dependent DNA ligase (MtuLigA) which is a novel, validated, and attractive drug target. We created mutants of the enzyme by systematically deleting domains from the C-terminal end of the enzyme to probe for their functional roles in the DNA nick joining reaction. Deletion of just the BRCT domain from MtuLigA resulted in total loss of activity in in vitro assays. However, the mutant could form an AMP-ligase intermediate that suggests that the defects caused by deletion of the BRCT domain occur primarily at steps after enzyme adenylation. Furthermore, genetic complementation experiments using a LigA deficient E. coli strain demonstrates that the BRCT domain of MtuLigA is necessary for bacterial survival in contrast to E. coli and T. filiformis LigA, respectively. We also report the identification, through virtual screening, of a novel N-substituted tetracyclic indole that competes with NAD+ and inhibits the enzyme with IC50 in the low muM range. It exhibits approximately 15-fold better affinity for MtuLigA compared to human DNA ligase I. In vivo assays using LigA deficient S. typhimurium and E. coli strains suggest that the observed antibacterial activity of the inhibitor arises from specific inhibition of LigA over ATP ligases in the bacteria. In silico ligand-docking studies suggest that the exquisite specificity of the inhibitor arises on account of its mimicking the interactions of NAD+ with MtuLigA. An analysis of conserved water in the binding site of the enzyme suggests strategies for synthesis of improved inhibitors with better specificity and potency.  相似文献   

16.
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.  相似文献   

17.
BackgroundIn the molybdenum cofactor biosynthesis pathway, MoaA and MoaC catalyze the first step of transformation of GTP to cPMP. In M. tuberculosis H37Rv, three different genes (Rv3111, Rv0864 and Rv3324c) encode for MoaC homologs. Out of these three only MoaC1 (Rv3111) is secretory in nature.MethodsWe have characterized MoaC1 protein through biophysical, in-silico, and immunological techniques.ResultsWe have characterized the conformation and thermodynamic stability of MoaC1, and have established its secretory nature by demonstrating the presence of anti-MoaC1 antibodies in human tuberculosis patients' sera. Further, MoaC1 elicited a dominant Th1 immune response in mice characterized by increased induction of IL-2 and IFN-γ.ConclusionIntegrating these results, we conclude that MoaC1 is a structured secretory protein capable of binding with GTP and eliciting induced immune response.General significanceThis study would be useful for the development of vaccines against tuberculosis and to improve methods used for diagnosis of tuberculosis.  相似文献   

18.
Rv2742是本课题组前期基于蛋白质基因组学策略从结核分枝杆菌Mycobacteriumtuberculosis H37Rv中发现、鉴定的遗漏注释基因。文中旨在建立结核分枝杆菌H37Rv漏注释蛋白Rv2742的可溶性诱导表达、纯化体系,为进一步探索Rv2742基因参与的生物学功能奠定基础。前期实验发现构建的pGEX-4T-2-Rv2742、pET-28a-Rv2742、pET-32a-Rv2742及pMAL-c2X-Rv2742原核表达载体均无法实现目的蛋白的诱导表达。但经密码子优化后,仅有pMAL-c2X-Rv2742载体能够实现目的蛋白的可溶性诱导表达。此外,通过比较不同宿主菌、温度及IPTG浓度对目的蛋白表达量的影响,发现目的蛋白在Rosetta (DE3)中,16℃及0.5mmol/LIPTG诱导条件下表达量最高。直链淀粉树脂(Amyloseresin)亲和层析柱纯化获得较纯的产物,经LC-MS/MS验证确认是Rv2742融合蛋白肽段序列。成功获得结核分枝杆菌H37Rv新基因Rv2742的重组蛋白,可进一步开展其潜在相互作用及免疫原性研究工作。  相似文献   

19.
The structure and intrinsic activities of conserved STAS domains of the ubiquitous SulP/SLC26 anion transporter superfamily have until recently remained unknown. Here we report the heteronuclear, multidimensional NMR spectroscopy solution structure of the STAS domain from the SulP/SLC26 putative anion transporter Rv1739c of Mycobacterium tuberculosis. The 0.87-Å root mean square deviation structure revealed a four-stranded β-sheet with five interspersed α-helices, resembling the anti-σ factor antagonist fold. Rv1739c STAS was shown to be a guanine nucleotide-binding protein, as revealed by nucleotide-dependent quench of intrinsic STAS fluorescence and photoaffinity labeling. NMR chemical shift perturbation analysis partnered with in silico docking calculations identified solvent-exposed STAS residues involved in nucleotide binding. Rv1739c STAS was not an in vitro substrate of mycobacterial kinases or anti-σ factors. These results demonstrate that Rv1739c STAS binds guanine nucleotides at physiological concentrations and undergoes a ligand-induced conformational change but, unlike anti-σ factor antagonists, may not mediate signals via phosphorylation.  相似文献   

20.
MHC class II (MHC-II)-restricted CD4(+) T cells are essential for control of Mycobacterium tuberculosis infection. This report describes the identification and purification of LprG (Rv1411c) as an inhibitor of primary human macrophage MHC-II Ag processing. LprG is a 24-kDa lipoprotein found in the M. tuberculosis cell wall. Prolonged exposure (>16 h) of human macrophages to LprG resulted in marked inhibition of MHC-II Ag processing. Inhibition of MHC-II Ag processing was dependent on TLR-2. Short-term exposure (<6 h) to LprG stimulated TLR-2-dependent TNF-alpha production. Thus, LprG can exploit TLR-2 signaling to inhibit MHC-II Ag processing in human macrophages. Inhibition of MHC-II Ag processing by mycobacterial lipoproteins may allow M. tuberculosis, within infected macrophages, to avoid recognition by CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号