首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organelle origins and ribosomal RNA   总被引:8,自引:0,他引:8  
As the detailed molecular biology of organelle genomes has unfolded, there has been a general acceptance of the view that plastids and mitochondria are of endosymbiotic, eubacterial origin. Plastid genes are strikingly similar to their eubacterial (particularly cyanobacterial) counterparts in sequence, organization, and mode of expression, and such features strongly support the hypothesis that the plastid and its genome were derived in evolution from a blue-green alga-like endosymbiont. Mitochondria, on the other hand, are problematic: mitochondrial genes are organized and expressed in remarkably diverse ways in the different major groups of eukaryotes, and in no case are these features particularly characteristic of either bacterial or nuclear genomes. There is, however, clear evidence derived from gene sequence supporting the eubacterial ancestry of mitochondria, and some of the most compelling data have come from analyses of mitochondrial ribosomal RNA (rRNA). Plant mitochondrial rRNA genes diverge in sequence at a particularly slow rate, and these genes have proven to be especially supportive of the endosymbiont hypothesis, pointing to an origin of mitochondria from within the alpha subdivision of the purple bacteria. Ribosomal RNA sequences provide a basis for the construction of global phylogenetic trees that probe the evolutionary history of organelles, and that address the question of whether mitochondria and plastids are monophyletic or polyphyletic in origin. Such studies raise the possibility that the rRNA genes of plant mitochondria originated separately from the mitochondrial rRNA genes of other eukaryotes.  相似文献   

2.
The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha-proteobacterial ancestor of mitochondria should, in phylogenetic trees, branch with homologues that are no longer found in most alpha-proteobacterial genomes, and some should reside on long branches that reveal affinity to eubacterial rather than archaebacterial homologues, but no particular affinity for any specific eubacterial donor.  相似文献   

3.
Mitochondria occur as aerobic, facultatively anaerobic, and, in the case of hydrogenosomes, strictly anaerobic forms. This physiological diversity of mitochondrial oxygen requirement is paralleled by that of free-living alpha-proteobacteria, the group of eubacteria from which mitochondria arose, many of which are facultative anaerobes. Although ATP synthesis in mitochondria usually involves the oxidation of reduced carbon compounds, many alpha-proteobacteria and some mitochondria are known to use sulfide (H2S) as an electron donor for the respiratory chain and its associated ATP synthesis. In many eubacteria, the oxidation of sulfide involves the enzyme sulfide:quinone oxidoreductase (SQR). Nuclear-encoded homologs of SQR are found in several eukaryotic genomes. Here we show that eukaryotic SQR genes characterized to date can be traced to a single acquisition from a eubacterial donor in the common ancestor of animals and fungi. Yet, SQR is not a well-conserved protein, and our analyses suggest that the SQR gene has furthermore undergone some lateral transfer among prokaryotes during evolution, leaving the precise eubacterial lineage from which eukaryotes obtained their SQR difficult to discern with phylogenetic methods. Newer geochemical data and microfossil evidence indicate that major phases of early eukaryotic diversification occurred during a period of the Earth's history from 1 to 2 billion years before present in which the subsurface ocean waters contained almost no oxygen but contained high concentrations of sulfide, suggesting that the ability to deal with sulfide was essential for prokaryotes and eukaryotes during that time. Notwithstanding poor resolution in deep SQR phylogeny and lack of a specifically alpha-protebacterial branch for the eukaryotic enzyme on the basis of current lineage sampling, a single eubacterial origin of eukaryotic SQR and the evident need of ancient eukaryotes to deal with sulfide, a process today germane to mitochondrial quinone reduction, are compatible with the view that eukaryotic SQR was an acquisition from the mitochondrial endosymbiont.  相似文献   

4.
To probe the earliest evolutionary events attending the origin of the five known genome types (archaebacterial, eubacterial, nuclear, mitochondrial and plastid), we have analyzed sequences corresponding to a ubiquitous, highly conserved core of secondary structure in small subunit rRNA. Our results support (i) the existence of three primary lineages (archaebacterial, eubacterial, and nuclear), (ii) a specific eubacterial ancestry for plastids and mitochondria (plant, animal, fungal), and (iii) an endosymbiotic, evolutionary origin of the two types of organelle from within distinct groups of eubacteria (blue-green algae (cyanobacteria) in the case of plastids, nonphotosynthetic aerobic bacteria in the case of mitochondria). In addition, our analysis suggests (iv) a biphyletic origin of mitochondria, with animal and fungal mitochondria branching together but separately from plant mitochondria, and (v) a monophyletic origin of plastids. The method described here provides a powerful and generally applicable molecular taxonomic approach towards a global phylogeny encompassing all organisms and organelles.  相似文献   

5.
The iron sulfur protein pyruvate: ferredoxin oxidoreductase (PFO) is central to energy metabolism in amitochondriate eukaryotes, including those with hydrogenosomes. Thus, revealing the evolutionary history of PFO is critical to understanding the origin(s) of eukaryote anaerobic energy metabolism. We determined a complete PFO sequence for Spironucleus barkhanus, a large fragment of a PFO sequence from Clostridium pasteurianum, and a fragment of a new PFO from Giardia lamblia. Phylogenetic analyses of eubacterial and eukaryotic PFO genes suggest a complex history for PFO, including possible gene duplications and horizontal transfers among eubacteria. Our analyses favor a common origin for eukaryotic cytosolic and hydrogenosomal PFOs from a single eubacterial source, rather than from separate horizontal transfers as previously suggested. However, with the present sampling of genes and species, we were unable to infer a specific eubacterial sister group for eukaryotic PFO. Thus, we find no direct support for the published hypothesis that the donor of eukaryote PFO was the common alpha-proteobacterial ancestor of mitochondria and hydrogenosomes. We also report that several fungi and protists encode proteins with PFO domains that are likely monophyletic with PFOs from anaerobic protists. In Saccharomyces cerevisiae, PFO domains combine with fragments of other redox proteins to form fusion proteins which participate in methionine biosynthesis. Our results are consistent with the view that PFO, an enzyme previously considered to be specific to energy metabolism in amitochondriate protists, was present in the common ancestor of contemporary eukaryotes and was retained, wholly or in part, during the evolution of oxygen-dependent and mitochondrion-bearing lineages.  相似文献   

6.
Most eukaryotes perform the oxidative decarboxylation of pyruvate in mitochondria using pyruvate dehydrogenase (PDH). Eukaryotes that lack mitochondria also lack PDH, using instead the O(2)-sensitive enzyme pyruvate : ferredoxin oxidoreductase (PFO), which is localized either in the cytosol or in hydrogenosomes. The facultatively anaerobic mitochondria of the photosynthetic protist Euglena gracilis constitute a hitherto unique exception in that these mitochondria oxidize pyruvate with the O(2)-sensitive enzyme pyruvate : NADP oxidoreductase (PNO). Cloning and analysis of Euglena PNO revealed that the cDNA encodes a mitochondrial transit peptide followed by an N-terminal PFO domain that is fused to a C-terminal NADPH-cytochrome P450 reductase (CPR) domain. Two independent 5.8-kb full-size cDNAs for Euglena mitochondrial PNO were isolated; the gene was expressed in cultures supplied with 2% CO(2) in air and with 2% CO(2) in N(2). The apicomplexan Cryptosporidium parvum was also shown to encode and express the same PFO-CPR fusion, except that, unlike E. gracilis, no mitochondrial transit peptide for C. parvum PNO was found. Recombination-derived remnants of PNO are conserved in the genomes of Saccharomyces cerevisiae and Schizosaccharomyces pombe as proteins involved in sulfite reduction. Notably, Trypanosoma brucei was found to encode homologs of both PFO and all four PDH subunits. Gene organization and phylogeny revealed that eukaryotic nuclear genes for mitochondrial, hydrogenosomal, and cytosolic PFO trace to a single eubacterial acquisition. These findings suggest a common ancestry of PFO in amitochondriate protists with Euglena mitochondrial PNO and Cryptosporidium PNO. They are also consistent with the view that eukaryotic PFO domains are biochemical relics inherited from a facultatively anaerobic, eubacterial ancestor of mitochondria and hydrogenosomes.  相似文献   

7.
8.
Accumulating evolutionary data point to a monophyletic origin of mitochondria from the order Rickettsiales. This large group of obligate intracellular -Proteobacteria includes the family Rickettsiaceae and several rickettsia-like endosymbionts (RLEs). Detailed phylogenetic analysis of small subunit (SSU) rRNA and chaperonin 60 (Cpn60) sequences testify to polyphyly of the Rickettsiales, and consistently indicate a sisterhood of Rickettsiaceae and mitochondria that excludes RLEs. Thus RLEs are considered as the nearest extant relatives of an extinct last common ancestor of mitochondria and rickettsiae. Phylogenetic inferences prompt the following assumptions. (1) Mitochondrial origin has been predisposed by the long-term endosymbiotic relationship between rickettsia-like bacteria and proto-eukaryotes, in which many endosymbiont genes have been lost while some indispensable genes have been transferred to the host genome. (2) The obligate dependence of rickettsiae upon a eukaryotic host rests on the import of proteins encoded by these transferred genes.The nature of a proto-eukaryotic cell still remains elusive. The divergence of Rickettsiaceae and mitochondria based on Cpn60, and the evolutionary history of two aminoacyl-tRNA synthetases favor the hypothesis that it was a chimera created by fusion of an archaebacterium and a eubacterium not long before an endosymbiotic event. These and other, mostly biochemical data suggest that all the mitochondrion-related organelles, i.e., both aerobically and anaerobically respiring mitochondria and hydrogenosomes, have originated from the same RLE, while hydrogenosomal energy metabolism may have a separate origin resulting from a eubacterial fusion partner.  相似文献   

9.
Intron phylogeny: a new hypothesis   总被引:35,自引:0,他引:35  
The three major classes of intron are clearly of unequal antiquity. Structured (often self-splicing and sometimes mobile) introns are the most ancient, probably dating (at least for group I) from the ancestral (eubacterial) cell 3500 million years ago, and were originally restricted to tRNA. Protein-spliced introns (usually in tRNA) probably evolved from them by a radical change in splicing mechanism in the common ancestor of eukaryotes and archaebacteria, perhaps only about 1700 million years ago. Spliceosomal introns probably evolved from group-II-like self-splicing introns after the origin of the nucleus between 1700 and 1000 million years ago, and were probably mostly inserted into previously unsplit protein-coding genes after the origin of mitochondria 1000 million years ago.  相似文献   

10.
All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.  相似文献   

11.
Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.  相似文献   

12.

Background

According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of the oceans that likely resemble the originating environment of mitochondria.

Methodology/Principal Findings

We present a phylogenetic study of the origin of mitochondria that incorporates metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade) as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade.

Conclusions/Significance

Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that represented by cultivated bacteria to study the origin of mitochondria.  相似文献   

13.
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.  相似文献   

14.
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondrial ribosomal large-subunit component in Saccharomyces cerevisiae. Increased dosage of MRPL36 also has been shown to suppress certain types of translation defects encoded within the mitochondrial COX2 mRNA. A central domain of MrpL36p that is similar to eubacterial ribosomal large-subunit protein L31 is sufficient for general mitochondrial translation but not suppression, and proteins bearing this domain sediment with the ribosomal large subunit in sucrose gradients. In contrast, proteins lacking the L31 domain, but retaining a novel N-terminal sequence and a C-terminal sequence with weak similarity to the Escherichia coli signal recognition particle component Ffh, are sufficient for dosage suppression and do not sediment with the large subunit of the ribosome. Interestingly, the activity of MrpL36p as a dosage suppressor exhibits gene and allele specificity. We propose that MrpL36p represents a highly diverged L31 homolog with derived domains functioning in mRNA selection in yeast mitochondria.  相似文献   

15.
Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell’s energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.  相似文献   

16.
The 82-90 kD family of molecular chaperone proteins has homologs in eukaryotes (Hsp90) and many eubacteria (HtpG) but not in Archaebacteria. We used representatives of all four different eukaryotic paralogs (cytosolic, endoplasmic reticulum (ER), chloroplast, mitochondrial) together with numerous eubacterial HtpG proteins for phylogenetic analyses to investigate their evolutionary origins. Our trees confirm that none of the organellar Hsp90s derives from the endosymbionts of early eukaryotes. Contrary to previous suggestions of distant origins through lateral gene transfer (LGT) all eukaryote Hsp90s are related to Gram-positive eubacterial HtpG proteins. The nucleocytosolic, ER and chloroplast Hsp90 paralogs are clearly mutually related. The origin of mitochondrial Hsp90 is more obscure, as these sequences are deeply nested within eubacteria. Our trees also reveal a deep split within eubacteria into a group of mainly long-branching sequences (including the eukaryote mitochondrial Hsp90s) and another group comprising exclusively short-branching HtpG proteins, from which the cytosolic/ER versions probably arose. Both versions are present in several eubacterial phyla, suggesting gene duplication very early in eubacterial evolution and multiple independent losses thereafter. We identified one probable case of LGT within eubacteria. However, multiple losses can simply explain the evolutionary pattern of the eubacterial HtpG paralogs and predominate over LGT. We suggest that the actinobacterial ancestor of eukaryotes harbored genes for both eubacterial HtpG paralogs, as the actinobacterium Streptomyces coelicolor still does; one could have given rise to the mitochondrial Hsp90 and the other, following another duplication event in the ancestral eukaryote, to the cytosolic and ER Hsp90 homologs.  相似文献   

17.
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.  相似文献   

18.
Mitochondria originated endosymbiotically from an Alphaproteobacteria-like ancestor. However, it is still uncertain which extant group of Alphaproteobacteria is phylogenetically closer to the mitochondrial ancestor. The proposed groups comprise the order Rickettsiales, the family Rhodospirillaceae, and the genus Rickettsia. In this study, we apply a new complex network approach to investigate the evolutionary origins of mitochondria, analyzing protein sequences modules in a critical network obtained through a critical similarity threshold between the studied sequences. The dataset included three ATP synthase subunits (4, 6, and 9) and its alphaproteobacterial homologs (b, a, and c). In all the subunits, the results gave no support to the hypothesis that Rickettsiales are closely related to the mitochondrial ancestor. Our findings support the hypothesis that mitochondria share a common ancestor with a clade containing all Alphaproteobacteria orders, except Rickettsiales.  相似文献   

19.
The origin and early evolution of mitochondria   总被引:3,自引:0,他引:3       下载免费PDF全文
Michael W Gray  Gertraud Burger  B Franz Lang 《Genome biology》2001,2(6):reviews1018.1-reviews10185
Complete sequences of numerous mitochondrial, many prokaryotic, and several nuclear genomes are now available. These data confirm that the mitochondrial genome originated from a eubacterial (specifically α-proteobacterial) ancestor but raise questions about the evolutionary antecedents of the mitochondrial proteome.  相似文献   

20.
Origin and Evolution of the Mitochondrial Proteome   总被引:10,自引:0,他引:10       下载免费PDF全文
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral α-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from α-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the α-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific α-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号