首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum and tungsten complexes as models for the active sites of assimilatory or dissimilatory nitrate reductases (NR) were computed at the CPCM-B98/SDDp//B3LYP/Lanl2DZp* plus zero point energy level of density functional theory. The ligands were chosen on the basis of available experimental protein or small chemical model structures. A water molecule is found to bind to assimilatory NR models [(Me2C2S2)MO(YMe)] (−11.5 kcal mol−1 for M is Mo, Y is S) and may be replaced by nitrate (−4.5 kcal mol−1) (but a hydroxy group may not). Nature’s choice of M is Mo and Y is S for NR has the largest activation energy for protein-free models (13.3 kcal mol−1) and the least exothermic reaction energy for the nitrate reduction (−14.9 kcal mol−1) compared with M is W and Y is O or Se alternatives. Water binding to dissimilatory NR model complexes [(Me2C2S2)2M(YR)] is considerably endothermic (10.3 kcal mol−1); nitrate binding is only slightly so (1.5 kcal mol−1 for RY is MeS). The exchange of an oxo ligand (assimilatory NR) for a dithiolato ligand (dissimilatory NR model) reduces the exothermicity (−8.6 kcal mol−1 relative to the fivefold-coordinate reduced complex) and raises the barrier for oxygen atom transfer (OAT) in the nitrate complex (19.2 kcal mol−1). Not for the mono but only for the bisdithiolato complexes hydrogen bonding involving the coordinated substrate may significantly lower the OAT barrier as shown by explicitly adding water molecules. Substitution of tungsten for molybdenum generally lowers OAT activation energies and makes nitrate reduction reaction energies more negative. Bidentate carboxylato binding identified in Escherichia coli NarGHI is the preferred binding mode also for an acetato model. However, one dithiolato ligand folds when the MoVI center is bare of a good π-donor ligand, e.g., an oxo group. Computations on [(mnt)2MoIV(YR)(PPh3)] [mnt is (CN)2C2S2 2−] gave a smaller nitrate reduction activation energy for RY is Cl, compared with RY is PhS, although experimentally only the phenyl thiolato complex and not the chloro complex was found to be a functional NR model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe–4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to −500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe–4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
The complete sequences of the dsrA and dsrB genes coding for the alpha- and beta-subunits, respectively, of the sulphite reductase enzyme in Desulfovibrio desulfuricans were determined. Analyses of the amino acid sequences indicated a number of serohaem/Fe4S4 binding consensus sequences whilst predictive secondary structure analysis revealed a similar pattern of alpha-helix and beta-strand structures between the two subunits which was indicative of gene duplication.  相似文献   

4.
Desulfovibrio desulfuricans ATCC 27774 is a sulfate reducer that can adapt to nitrate respiration, inducing the enzymes required to utilize this alternative metabolic pathway. Nitrite reductase from this organism has been previously isolated and characterized, but no information was available on the enzyme involved in the reduction of nitrate. This is the first report of purification to homogeneity of a nitrate reductase from a sulfate reducing organism, thus completing the enzymatic system required to convert nitrate (through nitrite) to ammonia. D. desulfuricans nitrate reductase is a monomeric (circa 70 kDa) periplasmic enzyme with a specific activity of 5.4 K(m) for nitrate was estimated to be 20 microM. EPR signals due to one [4Fe-4S] cluster and Mo(V) were identified in dithionite reduced samples and in the presence of nitrate.  相似文献   

5.
The first crystal structure of a native di-iron center in an iron-storage protein (bacterio)ferritin is reported. The protein, isolated from the anaerobic bacterium Desulfovibrio desulfuricans, has the unique property of having Fe-coproporphyrin III as its heme cofactor. The three-dimensional structure of this bacterioferritin was determined in three distinct catalytic/redox states by X-ray crystallography (at 1.95, 2.05 and 2.35 A resolution), corresponding to different intermediates of the di-iron ferroxidase site. Conformational changes associated with these intermediates support the idea of a route for iron entry into the protein shell through a pore that passes through the di-iron center. Molecular surface and electrostatic potential calculations also suggest the presence of another ion channel, distant from the channels at the three- and four-fold axes proposed as points of entry for the iron atoms.  相似文献   

6.
BACKGROUND: Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases. RESULTS: We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified. CONCLUSIONS: The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.  相似文献   

7.
Nitrate assimilation in autotrophs provides most of the reduced nitrogen on earth. In eukaryotes, reduction of nitrate to nitrite is catalyzed by the molybdenum-containing NAD(P)H:nitrate reductase (NR; EC 1.7.1.1-3). In addition to the molybdenum center, NR contains iron-heme and flavin adenine dinucleotide as redox cofactors involved in an internal electron transport chain from NAD(P)H to nitrate. Recombinant, catalytically active Pichia angusta nitrate-reducing, molybdenum-containing fragment (NR-Mo) was expressed in P. pastoris and purified. Crystal structures for NR-Mo were determined at 1.7 and 2.6 angstroms. These structures revealed a unique slot for binding nitrate in the active site and identified key Arg and Trp residues potentially involved in nitrate binding. Dimeric NR-Mo is similar in overall structure to sulfite oxidases, with significant differences in the active site. Sulfate bound in the active site caused conformational changes, as compared with the unbound enzyme. Four ordered water molecules located in close proximity to Mo define a nitrate binding site, a penta-coordinated reaction intermediate, and product release. Because yeast NAD(P)H:NR is representative of the family of eukaryotic NR, we propose a general mechanism for nitrate reduction catalysis.  相似文献   

8.
The plant mitochondrial protein alternative oxidase catalyses dioxygen dependent ubiquinol oxidation to yield ubiquinone and water. A structure of this protein has previously been proposed based on an assumed structural homology to the di-iron carboxylate family of proteins. However, these authors suggested the protein has a very different topology than the known structures of di-iron carboxylate proteins. We have re-examined this model and based on comparison of recent sequences and structural data on di-iron carboxylate proteins we present a new model of the alternative oxidase which allows prediction of active site residues and a possible membrane binding motif.  相似文献   

9.
Twenty cocaine–water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C?=?O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H?·?·?·?O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.  相似文献   

10.
11.
Rubredoxin from Desulfovibrio desulfuricans (strain 27774) has been isolated and crystallized. Preliminary amino acid and crystallographic analyses indicate that this rubredoxin is the smallest rubredoxin isolated so far. The amino acid analysis indicates that the molecule is composed of 45 to 48 residues and contains histidine, which is unusual for rubredoxins from anaerobic bacteria. The X-ray diffraction pattern from these crystals reveals they belong to space group P1 with cell parameters: a = 24.92 A, b = 17.79 A, c = 19.72 A, alpha = 101.0 degrees, beta = 83.4 degrees, gamma = 104.5 degrees. The unit cell volume of 8283 A3 indicates a molecule with molecular weight no greater than 5500 and is consistent with the smaller number of amino acids found in this rubredoxin. The solvent content of this rubredoxin crystal appears to be the lowest observed in crystalline proteins.  相似文献   

12.
Tri(2-pyridylmethyl)amineCu complex-linked iron meso-tetraphenylporphyine derivatives were prepared to model the active site of cytochrome c oxidase. Exposure to oxygen converted the reduced forms of the complexes to the corresponding stable mu-peroxo species in spite of the presence of three coordination sites, two on the heme and one on the Cu. The oxy forms were characterized spectroscopically. Kinetic analyses of the oxygenation reactions of the reduced forms suggests that preferential O2 binding occurs at the Cu site over the heme. This mechanism is also supported by examination of the redox potentials of the two metal ions. Since the peroxy complexes of the models exhibit a structure similar to that of the previously reported fully-oxidized form, the relevance of the model chemistry to the enzyme reaction is discussed.  相似文献   

13.
14.
Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the “LID” domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.  相似文献   

15.
The stable geometries and atomization energies for the clusters Ni n (n = 2–5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.  相似文献   

16.
Hydrogenase from Desulfovibrio desulfuricans (ATCC No. 27774) grown in unenriched and in enriched 61Ni and 57Fe media has been purified to apparent homogeneity. Two fractions of enzymes with hydrogenase activity were separated and were termed hydrogenase I and hydrogenase II. they were shown to have similar molecular weights (77,600 for hydrogenase I and 75,500 for hydrogenase II), to be composed of two polypeptide chains, and to contain Ni and non-heme iron. Because of its higher specific activity (152 versus 97) hydrogenase II was selected for EPR and M?ssbauer studies. As isolated, hydrogenase II exhibits an "isotropic" EPR signal at g = 2.02 and a rhombic EPR signal at g = 2.3, 2.2, and 2.0. Isotopic substitution of 61Ni proves that the rhombic signal is due to Ni. Combining the M?ssbauer and EPR data, the isotropic g = 2.02 EPR signal was shown to originate from a 3Fe cluster which may have oxygenous or nitrogenous ligands. In addition, the M?ssbauer data also revealed two [4Fe-4S]2+ clusters iun each molecule of hydrogenase II. The EPR and M?ssbauer data of hydrogenase I were found to be identical to those of hydrogenase II, indicating that both enzymes have common metallic centers.  相似文献   

17.
18.
In drug optimization calculations, the molecular mechanics Poisson‐Boltzmann surface area (MM‐PBSA) method can be used to compute free energies of binding of ligands to proteins. The method involves the evaluation of the energy of configurations in an implicit solvent model. One source of errors is the force field used, which can potentially lead to large errors due to the restrictions in accuracy imposed by its empirical nature. To assess the effect of the force field on the calculation of binding energies, in this article we use large‐scale density functional theory (DFT) calculations as an alternative method to evaluate the energies of the configurations in a “QM‐PBSA” approach. Our DFT calculations are performed with a near‐complete basis set and a minimal parameter implicit solvent model, within the self‐consistent calculation, using the ONETEP program on protein–ligand complexes containing more than 2600 atoms. We apply this approach to the T4‐lysozyme double mutant L99A/M102Q protein, which is a well‐studied model of a polar binding site, using a set of eight small aromatic ligands. We observe that there is very good correlation between the MM and QM binding energies in vacuum but less so in the solvent. The relative binding free energies from DFT are more accurate than the ones from the MM calculations, and give markedly better agreement with experiment for six of the eight ligands. Furthermore, in contrast to MM‐PBSA, QM‐PBSA is able to correctly predict a nonbinder. Proteins 2014; 82:3335–3346. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The periplasmic nitrate reductase (NapAB), a member of the DMSO reductase superfamily, catalyzes the first step of the denitrification process in bacteria. In this heterodimer, a di-heme NapB subunit is associated to the catalytic NapA subunit that binds a [4Fe-4S] cluster and a bis(molybdopterin guanine dinucleotide) cofactor. Here, we report the kinetic characterization of purified mutated heterodimers from Rhodobacter sphaeroides. By combining site-directed mutagenesis, redox potentiometry, EPR spectroscopy, and enzymatic characterization, we investigate the catalytic role of two conserved residues (M153 and R392) located in the vicinity of the molybdenum active site. We demonstrate that M153 and R392 are involved in nitrate binding: the Vm measured on the M153A and R392A mutants are similar to that measured on the wild-type enzyme, whereas the Km for nitrate is increased 10-fold and 200-fold, respectively. The use of an alternative enzymatic assay led us to discover that NapAB is uncompetitively inhibited by Zn2+ ions (Ki' = 1 microM). We used this property to further probe the active site access in the mutant enzymes. It is proposed that R392 acts as a filter by preventing a direct reduction of the Mo atom by small reducing molecules and partially protecting the active site against zinc inhibition. In addition, we show that M153 is a key residue mediating this inhibition likely by coordinating Zn2+ ions via its sulfur atom. This residue is not conserved in the DMSO reductase superfamily while it is conserved in the periplasmic nitrate reductase family. Zinc inhibition is therefore likely to be specific and restricted to periplasmic nitrate reductases.  相似文献   

20.
The extracellular speciation of mercury may control bacterial uptake and methylation. Mercury-polysulfide complexes have recently been shown to be prevalent in sulfidic waters containing zero-valent sulfur. Despite substantial increases in total dissolved mercury concentration, methylation rates in cultures of Desulfovibrio desulfuricans ND132 equilibrated with cinnabar did not increase in the presence of polysulfides, as expected due to the large size and charged nature of most of the complexes. In natural waters not at saturation with cinnabar, mercury-polysulfide complexes would be expected to shift the speciation of mercury from HgS0(aq) toward charged complexes, thereby decreasing methylation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号