首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TGF-β and BMP signaling in osteoblast differentiation and bone formation   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.  相似文献   

2.
3.
4.
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.  相似文献   

5.
6.
7.
The 'small fox tapeworm' Echinococcus multilocularis has recently become a matter of intense interest in Germany. A long-term increase of its prevalence in foxes has been noted in the well-known endemic areas in Southern Germany, and reports on the occurrence of the parasite in other parts of the country suggest that the parasite is actually much more widespread than previously thought. As nearly all of the relevant studies are published in the German language in a veterinary journal and in the hunting press, accessibility to the information is limited. Richard Lucius and Brigit Bilger here describe the situation, and discuss the possible reasons and consequences.  相似文献   

8.
Oligomeric interactions of TGF-β and BMP receptors   总被引:1,自引:0,他引:1  
Ehrlich M  Gutman O  Knaus P  Henis YI 《FEBS letters》2012,586(14):1885-1896
  相似文献   

9.
Negative regulation of TGF-β signaling in development   总被引:4,自引:0,他引:4  
Chen YG  Meng AM 《Cell research》2004,14(6):441-449
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development.  相似文献   

10.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.  相似文献   

11.
An immense number of cellular processes are initiated by cell surface serine/threonine kinase receptors belonging to the TGF-β/BMP family. Subsequent downstream signalling cascades, as well as their crosstalk results in enormous specificity in terms of phenotypic outcome, e.g. proliferation, differentiation, migration or apoptosis. Such signalling diversity is achieved by the ability of receptors to interact with distinct proteins in a spatio-temporal manner. Following the cloning of the TGF-β/BMP receptors a variety of different technologies were applied to identify such interacting proteins. Here we present a comprehensive survey of known interactome analyses, including our own data, on these receptors and discuss advantages and disadvantages of the applied technologies.  相似文献   

12.
13.
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial–mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.  相似文献   

14.
Keller B  Yang T  Chen Y  Munivez E  Bertin T  Zabel B  Lee B 《PloS one》2011,6(1):e16421
TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI) in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.  相似文献   

15.
Javelaud D  Pierrat MJ  Mauviel A 《FEBS letters》2012,586(14):2016-2025
Hedgehog (HH) and TGF-β signals control various aspects of embryonic development and cancer progression. While their canonical signal transduction cascades have been well characterized, there is increasing evidence that these pathways are able to exert overlapping activities that challenge efficient therapeutic targeting. We herein review the current knowledge on HH signaling and summarize the recent findings on the crosstalks between the HH and TGF-β pathways in cancer.  相似文献   

16.
17.
18.
19.
《Process Biochemistry》2014,49(7):1107-1112
Aromatic β-amino ketones/alcohols such as adrenalone play an important role in some stereoselective synthesis of pharmaceuticals. Unfortunately, the transformation of aromatic β-amino ketones to their chiral alcohols has been carried out chemically as no corresponding biocatalyst has been available. Here, a novel carbonyl reductase responsible for the reduction of adrenalone to (R)-(−)-epinephrine was identified and characterized from Kocuria rhizophila. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by ion-exchange column chromatography, hydrophobic chromatography and gel chromatography. The purified enzyme yielded pure (R)-enantiomer product with high activity and utilized NADH as the cofactor. The enzyme had special significance by showing selectivity for many aromatic β-amino ketones/alcohols such as 2-amino-acetophenone, 2-amino-4′-hydroxyacetophenone, isoproterenol and ephedrine. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for adrenalone and NADH were 14.62 μmol/(min mg) protein and 0.189 mM, 11.66 μmol/(min mg) protein and 0.204 mM respectively. These properties ensure the enzyme a promising future for industrial application as a replacement of chemical synthesis of aromatic β-amino chiral alcohols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号