首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult stem cells are proposed to have acquired special features to prevent an accumulation of DNA-replication errors. Two such mechanisms, frequently suggested to serve this goal are cellular quiescence, and non-random segregation of DNA strands during stem cell division, a theory designated as the immortal strand hypothesis. To date, it has been difficult to test the in vivo relevance of both mechanisms in stem cell systems. It has been shown that in the flatworm Macrostomum lignano pluripotent stem cells (neoblasts) are present in adult animals. We sought to address by which means M. lignano neoblasts protect themselves against the accumulation of genomic errors, by studying the exact mode of DNA-segregation during their division. In this study, we demonstrated four lines of in vivo evidence in favor of cellular quiescence. Firstly, performing BrdU pulse-chase experiments, we localized 'Label-Retaining Cells' (LRCs). Secondly, EDU pulse-chase combined with Vasa labeling demonstrated the presence of neoblasts among the LRCs, while the majority of LRCs were differentiated cells. We showed that stem cells lose their label at a slow rate, indicating cellular quiescence. Thirdly, CldU/IdU- double labeling studies confirmed that label-retaining stem cells showed low proliferative activity. Finally, the use of the actin inhibitor, cytochalasin D, unequivocally demonstrated random segregation of DNA-strands in LRCs. Altogether, our data unambiguously demonstrated that the majority of neoblasts in M. lignano distribute their DNA randomly during cell division, and that label-retention is a direct result of cellular quiescence, rather than a sign of co-segregation of labeled strands.  相似文献   

2.
3.
Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. The free-living flatworm Macrostomum lignano is currently the only flatworm where stable transgenesis is available, and as such it offers a powerful experimental platform to address questions that were previously difficult to answer. The published transgenesis approach relies on random integration of DNA constructs into the genome. Despite its efficiency, there is room and need for further improvement and diversification of transgenesis methods in M. lignano. Transposon-mediated transgenesis is an alternative approach, enabling easy mapping of the integration sites and the possibility of insertional mutagenesis studies. Here, we report for the first time that transposon-mediated transgenesis using piggyBac can be performed in M. lignano to create stable transgenic lines with single-copy transgene insertions.  相似文献   

4.
Animals show a large variability of lifespan, ranging from short‐lived as Caenorhabditis elegans to immortal as Hydra. A fascinating case is flatworms, in which reversal of aging by regeneration is proposed, yet conclusive evidence for this rejuvenation‐by‐regeneration hypothesis is lacking. We tested this hypothesis by inducing regeneration in the sexual free‐living flatworm Macrostomum lignano. We studied survival, fertility, morphology, and gene expression as a function of age. Here, we report that after regeneration, genes expressed in the germline are upregulated at all ages, but no signs of rejuvenation are observed. Instead, the animal appears to be substantially longer lived than previously appreciated, and genes expressed in stem cells are upregulated with age, while germline genes are downregulated. Remarkably, several genes with known beneficial effects on lifespan when overexpressed in mice and C. elegans are naturally upregulated with age in M. lignano, suggesting that molecular mechanism for offsetting negative consequences of aging has evolved in this animal. We therefore propose that M. lignano represents a novel powerful model for molecular studies of aging attenuation, and the identified aging gene expression patterns provide a valuable resource for further exploration of anti‐aging strategies.  相似文献   

5.
Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila and C. elegans, nothing is known on the function of boule in non-vertebrate animals. In the present study, we report on three boule orthologues in the flatworm Macrostomum lignano. We demonstrate that macbol1 and macbol2 are expressed in testes whilst macbol3 is expressed in ovaries and developing eggs. Macbol1 RNAi blocked spermatocyte differentiation whereas macbol2 showed no effect upon RNAi treatment. Macbol3 RNAi resulted in aberrant egg maturation and led to female sterility. We further demonstrated the evolutionary functional conservation of macbol1 by introducing this gene into Drosophila bol1 mutants. Macbol1 was able to rescue the progression of fly meiotic divisions. In summary, our findings provide evidence for an involvement of boule genes in male and female gamete development in one organism. Furthermore, boule gene function is shown here for the first time in a lophotrochozoan. Our results point to a more diverse functional assignment of boule genes. Therefore, a better understanding of boule function in flatworms can help to elucidate the molecular mechanisms of and concomitant infertility in higher organisms including humans.  相似文献   

6.
PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.  相似文献   

7.
8.
9.
10.
Platyhelminthes are highly attractive models for addressing fundamental aspects of stem cell biology in vivo. These organisms possess a unique stem cell system comprised of neoblasts that are the only proliferating cells during adulthood. We have investigated Ts (S‐phase duration) of neoblasts during homoeostasis and regeneration in the flatworm, Macrostomum lignano. A double immunohistochemical technique was used, performing sequential pulses with the thymidine analogues CldU (chlorodeoxyuridine) and IdU (iododeoxyuridine), separated by variable chase times in the presence of colchicine. Owing to the localized nature of the fluorescent signals (cell nuclei) and variable levels of autofluorescence, standard intensity‐based colocalization analyses could not be applied to accurately determine the colocalization. Therefore, an object‐based colocalization approach was devised to score the relative number of double‐positive cells. Using this approach, Ts (S‐phase duration) in the main population of neoblasts was ~13 h. During early regeneration, no significant change in Ts was observed.  相似文献   

11.
Spermiogenesis in Macrostomum lignano (Macrostomorpha, Rhabditophora) is described using light‐ and electron microscopy of the successive stages in sperm development. Ovoid spermatids develop to highly complex, elongated sperm possessing an undulating distal (anterior) process (or “feeler”), bristles, and a proximal (posterior) brush. In particular, we present a detailed account of the morphology and ontogeny of the bristles, describing for the first time the formation of a highly specialized bristle complex consisting of several parts. This complex is ultimately reduced when sperm are mature. The implications of the development of this bristle complex on both sperm maturation and the evolution and function of the bristles are discussed. The assumed homology between bristles and flagellae questioned. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
The seminal fluid proteins (SFPs) transferred to mating partners along with sperm often play crucial roles in mediating post‐mating sexual selection. One way in which sperm donors can maximize their own reproductive success is by modifying the partner's (sperm recipient's) post‐copulatory behaviour to prevent or delay re‐mating, thereby decreasing the likelihood or intensity of sperm competition. Here, we adopted a quantitative genetic approach combining gene expression and behavioural data to identify candidates that could mediate such a response in the simultaneously hermaphroditic flatworm Macrostomum lignano. We identified two putative SFPs—Mlig‐pro46 and Mlig‐pro63—linked to both mating frequency and ‘suck’ frequency, a distinctive behaviour, in which, upon ejaculate receipt, the worm places its pharynx over its female genital opening and apparently attempts to remove the received ejaculate. We, therefore, performed a manipulative experiment using RNA interference‐induced knockdown to ask how the loss of Mlig‐pro46 and Mlig‐pro63 expression, singly and in combination, affects mating frequency, partner suck propensity and sperm competitive ability. None of the knockdown treatments impacted strongly on the mating frequency or sperm competitive ability, but knockdown of Mlig‐pro63 resulted in a significantly decreased suck propensity of mating partners. This suggests that Mlig‐pro63 may normally act as a cue in the ejaculate to trigger recipient suck behaviour and—given that other proteins in the ejaculate have the opposite effect—could be one component of an ongoing arms race between donors and recipients over the control of ejaculate fate. However, the adaptive significance of Mlig‐pro46 and Mlig‐pro63 from a donor perspective remains enigmatic.  相似文献   

13.
We have isolated and identified the vasa homologue macvasa, expressed in testes, ovaries, eggs and somatic stem cells of the flatworm Macrostomum lignano. Molecular tools such as in situ hybridization and RNA interference were developed for M. lignano to study gene expression and function. Macvasa expression was followed during postembryonic development, regeneration and in starvation experiments. We were able to follow gonad formation in juveniles and the reformation of gonads from stem cells after amputation by in situ hybridization and a specific Macvasa antibody. Expression of macvasa in the germ cells was highly affected by feeding conditions and correlated with the decrease and regrowth of the gonads. RNA interference showed specific down-regulation of macvasa mRNA and protein. The absence of Macvasa did not influence gonad formation and stem cell proliferation. Our results corroborate the exclusive nature of the flatworm stem cell system but challenge the concept of a solely postembryonic specification of the germ line in Platyhelminthes. We address the transition of somatic stem cells to germ cells and speculate on Macrostomum as a system to unravel the mechanisms of preformation or epigenesis in the evolution of germ line specification from somatic stem cells.  相似文献   

14.
15.
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.  相似文献   

16.
17.

Background

Flatworms are characterized by an outstanding stem cell system. These stem cells (neoblasts) can give rise to all cell types including germ cells and power the exceptional regenerative capacity of many flatworm species. Macrostomum lignano is an emerging model system to study stem cell biology of flatworms. It is complementary to the well-studied planarians because of its small size, transparency, simple culture maintenance, the basal taxonomic position and its less derived embryogenesis that is more closely related to spiralians. The development of cell-, tissue- and organ specific markers is necessary to further characterize the differentiation potential of flatworm stem cells. Large scale in situ hybridization is a suitable tool to identify possible markers. Distinguished genes identified in a large scale screen in combination with manipulation of neoblasts by hydroxyurea or irradiation will advance our understanding of differentiation and regulation of the flatworm stem cell system.

Results

We have set up a protocol for high throughput large scale whole mount in situ hybridization for the flatworm Macrostomum lignano. In the pilot screen, a number of cell-, tissue- or organ specific expression patterns were identified. We have selected two stem cell- and germ cell related genes – macvasa and macpiwi – and studied effects of hydroxyurea (HU) treatment or irradiation on gene expression. In addition, we have followed cell proliferation using a mitosis marker and bromodeoxyuridine labeling of S-phase cells after various periods of HU exposure or different irradiation levels. HU mediated depletion of cell proliferation and HU induced reduction of gene expression was used to generate a cDNA library by suppressive subtractive hybridization. 147 differentially expressed genes were sequenced and assigned to different categories.

Conclusion

We show that Macrostomum lignano is a suitable organism to perform high throughput large scale whole mount in situ hybridization. Genes identified in such screens – together with BrdU/H3 labeling – can be used to obtain information on flatworm neoblasts.  相似文献   

18.
RNA in the periphery of rapidly proliferating mouse lymphoid cells   总被引:1,自引:0,他引:1  
RNA in the peripheries of various populations of lymph node cells (LNC) has been evaluated by measuring the electrophoretic mobilities of cells, before and after treatment with active or inactivated ribonucleases. Three different populations of LNC were studied: (1) “resting” normal age control LNC; (2) “syngeneic” LNC from irradiated (C3H × C57BL)F1 or C3H mice four to six days following transplantation of syngeneic spleen cells; such cells were progeny of lymphopoietic progenitor cells of the spleen; and (3) “allogeneic” LNC from irradiated (C3H × C57BL)F1 mice four to six days after grafting C3H (parental) spleen cells; such cells were progeny of lymphopoietic progenitor cells, but also alloantigen-sensitive cells of the spleen which proliferate in response to the host's alloantigens (a “graft-versus-host” immunological reaction). Whereas the normal LNC had no detectable peripheral RNA, the allogeneic and syngeneic LNC did, i.e., ribonuclease reduced their mean electrophoretic mobilities by 13.6 and 9.2 per cent, respectively. Since both allogeneic and syngeneic LNC had peripheral RNA, no specific correlation could be made with immunological activity. 3H-uridine and 14C-thymidine incorporation into lymph nodes was greatest in allogeneic, intermediate in syngeneic and least in age control lymph nodes, indicating a “population shift” in the spleen cell chimeras toward relatively immature, rapidly proliferating cells, which had a relatively high rate of RNA synthesis. Thus, rapidly proliferating lymphoid cells do have RNA in their peripheries, but its relation to specific immunological function has yet to be ascertained.  相似文献   

19.
20.
The nuclear matrix of slowly proliferating rat liver is compared with rapidly proliferating regenerating liver and Zajdela ascites hepatoma cells. While no differences are detected in overall ultrastructure, composition or polypeptide profiles of normal liver versus regenerating liver matrices, significant alterations are observed in the polypeptides of Zajdela hepatoma nuclear matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号