首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity-induced adaptations in skeletal muscles of iron-deficient rabbits   总被引:1,自引:0,他引:1  
The purpose of this study was to determine whether severe iron deficiency alters the adaptive response of skeletal muscle fibers to a sustained increase in tonic contractile activity. Seven weanling rabbits consumed a low iron diet and underwent phlebotomy twice weekly for 6 mo, resulting in severe anemia (mean Hb 5.5 g/dl). Compared with control animals, tibialis anterior skeletal muscles of iron-deficient animals exhibited reduced concentrations of cytochrome c (4.4 +/- 0.7 vs. 8.6 +/- 0.7 nmol/g tissue; P less than 0.01), and reduced activities of citrate synthase (83 +/- 10 vs. 133 +/- 13 mU/mg protein; P less than 0.01) and cytochrome-c oxidase (2.2 +/- 0.2 vs. 3.6 +/- 0.5 U/mg protein; P less than 0.05). In these muscles mitochondria were swollen and displayed deformed cristae. Less severe biochemical abnormalities were observed in cardiac and soleus skeletal muscles. Ten days of continuous electrical stimulation of the motor nerve supplying anterior compartment muscles of iron-deficient rabbits increased expression of mitochondrial proteins: cytochrome c was increased to 154% of control levels (P less than 0.05), and cytochrome-c oxidase and citrate synthase activities were increased to 199 and 272% of control levels, respectively (P less than 0.005). In addition, electrical pacing increased the fractional volume of mitochondria observed by electron microscopy and reduced the activity of aldolase A by 28% (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Colloidal carbon was injected i.v. in mature virgin rabbits at different times after induction of ovulation by human chorionic gonadotrophin (hCG, 100 iu) or mating. Before induction of ovulation, slight carbon leakage was observed in the inner vascular ring of the theca interna of antral follicles, but blood vessels in the other ovarian compartments were unstained. Between 4 and 10.5 h after hCG-treatment or mating, vascular leakage was most marked in the blood vessels of the interstitial gland and in the theca interna of antral follicles. Just before ovulation, carbon particles were observed between granulosa cells and some carbon was seeping into the follicular fluid of preruptured follicles. Vascular leakage was also observed over the follicle dome before rupture as well as at the dorsomedial junction between the mesovarium and the ovary. The blood vessels stained with carbon were 7-70 microns diameter, representing capillaries and postcapillary venules. About 6 h after hCG injection, an increased number of polymorphonuclear leucocytes migrated from the vessels of these ovarian compartments into the surrounding interstitial tissue. The number of leucocytes seen in the follicular wall and ovarian medulla increased markedly towards ovulation. During early corpus luteum formation, the number of leucocytes decreased markedly. The localized vascular changes seen after mating and hCG stimulation were similar to an inflammatory reaction and could form the basis for the formation of peritoneal exudate after ovulation in rabbits and periovulatory ascitic accumulation seen in the peritoneal cavity of women during the menstrual cycle.  相似文献   

3.
Vascular endothelial function deteriorates with age and disease, and the production of vasodilator factors like nitric oxide (NO) decreases. The free amino acid l-citrulline increases vasodilation and blood flow through increased NO production. We examined the effects of oral l-citrulline administration on vascular delivery of substances to skeletal muscles. In Experiment 1, following oral l-citrulline administration and subsequent intravenous Evans blue dye (EBD) administration to rats, EBD levels delivered to skeletal muscles were measured after 60 min. In Experiment 2, plasma concentrations of amino acids and NOx, an indicator of vasodilation, were measured over time after oral l-citrulline administration. In Experiment 3, we measured EBD levels in skeletal muscles of streptozotocin-induced type 1 diabetic rats following l-citrulline administration. In these experiments, EBD levels in the soleus muscle were higher in the l-citrulline group than in the control group (19.9 ± 0.7 vs. 22.5 ± 1.9 μg/g tissue, p < 0.05). Plasma l-arginine, l-citrulline, and NOx levels were increased within 30 min after l-citrulline administration. EBD levels in the soleus and gastrocnemius muscles were higher in diabetic rats with l-citrulline administration (18.7 ± 2.2 vs. 25.0 ± 4.3 μg/g tissue, p < 0.05 and 8.0 ± 0.5 vs. 9.2 ± 0.8 μg/g tissue, p = 0.05, respectively). These data suggest that oral l-citrulline administration may increase the level of substances delivered to skeletal muscles by increasing the NO production in both normal and vascular endothelial dysfunction models.  相似文献   

4.
5.
Endotoxin increases pulmonary vascular protein permeability in the dog   总被引:5,自引:0,他引:5  
Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. 113mIn-labeled protein and 99mTc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonella enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.  相似文献   

6.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

7.
Platelet-activating factor increases lung vascular permeability to protein   总被引:2,自引:0,他引:2  
We studied the effects of platelet-activating factor (PAF) on pulmonary hemodynamics and microvascular permeability in unanesthetized sheep prepared with lung-lymph fistulas. Since cyclooxygenase metabolites have been implicated in mediating these responses, we also examined the role of the cyclooxygenase pathway. PAF infusion (4 micrograms X kg-1 X h-1 for 3 h) produced a rapid, transient rise in pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), plasma thromboxane B2 concentration (TxB2), and pulmonary lymph flow (Qlym). The lymph-to-plasma protein concentration ratio (L/P) did not change from base line. Pretreatment with the cyclooxygenase inhibitor, sodium meclofenamate, prevented the generation of TxB2 and the hemodynamic changes but did not prevent the increase in Qlym. The estimated protein reflection coefficient decreased from a control value of 0.66 +/- 0.04 to 0.43 +/- 0.06 after PAF infusion. We also studied the effects of PAF on endothelial permeability in vitro by measuring the flux of 125I-albumin across cultured bovine pulmonary artery endothelial cells (EC) grown to confluency on a gelatinized micropore filter and mounted within a modified Boyden chemotaxis chamber. PAF (10(-8) to 10(-4) M) had no direct effect on EC albumin permeability, suggesting that the increase in permeability in sheep was not the direct lytic effect of PAF. In conclusion, PAF produces pulmonary vasoconstriction mediated by cyclooxygenase metabolites. PAF also increases pulmonary vascular permeability to protein that is independent of cyclooxygenase products and is not the result of a direct effect of PAF on the endothelium.  相似文献   

8.
9.
10.
The syndrome of neurogenic pulmonary edema raises the question of whether there are neurological influences on pulmonary vascular permeability. Previous experimental models commonly produced severe hemodynamic alterations, complicating the distinction of increased permeability from increased hydrostatic forces in the formation of the pulmonary edema. Accordingly, we employed a milder central nervous system insult and measured the pulmonary vascular protein extravasation rate, which is a sensitive and specific indicator of altered protein permeability. After elevating intracranial pressure via cisternal saline infusion in anesthetized dogs, we used a dual isotope method to measure the protein leak index. This elevated intracranial pressure resulted in a nearly three-fold rise in the protein leak index (54.1 +/- 7.5 vs. 20.2 +/- 0.9). This central nervous system insult was associated with only mild increases in pulmonary arterial pressures and cardiac output. However, when we reproduced these hemodynamic changes with left atrial balloon inflation or isoproterenol infusion, we observed no effect on the protein leak index compared with control. Although the pulmonary arterial wedge pressure with intracranial pressure remained <10 mmHg, increases in the extravascular lung water were demonstrated. The results suggest the existence of neurological influences on pulmonary vascular protein permeability. We conclude that neurological insults result in increase pulmonary vascular permeability to protein and subsequent edema formation, which could not be accounted for by hemodynamic changes alone.  相似文献   

11.
The effects of ethanol on both Ca2+ pump activity and Ca2+-induced Ca2+ release in sarcoplasmic reticulum (SR) of rabbit skeletal muscle were studied. In concentrations of 0.1-1.0%, ethanol conspicuously enhanced Ca2+ release from the heavy fraction of SR, whereas a much smaller effect was noted in the light fraction. When Ca2+-induced Ca2+ release was inhibited by 10 mM Mg2+, the Ca2+ pump activities of both the heavy and light SR were the same; the activities were not significantly influenced by 1% ethanol. Ethanol itself did not release Ca2+ from the heavy SR. However, it appeared to render the heavy SR more permeable to Ca2+, thereby decreasing the amount of storable Ca2+. This action of ethanol may be related to the mechanism of its negative inotropic effect.  相似文献   

12.
Parker, James C., and Claire L. Ivey.Isoproterenol attenuates high vascular pressure-inducedpermeability increases in isolated rat lungs. J. Appl.Physiol. 83(6): 1962-1967, 1997.To separate thecontributions of cellular and basement membrane components of thealveolar capillary barrier to the increased microvascular permeabilityinduced by high pulmonary venous pressures (Ppv), we subjected isolatedrat lungs to increases in Ppv, which increased capillary filtrationcoefficient(Kfc) withoutsignificant hemorrhage (31 cmH2O)and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 µM)was infused in one group (Iso) to identify a reversible cellularcomponent of injury, and residual blood volumes were measured to assessextravasation of red blood cells through ruptured basement membranes.In untreated lungs (High Ppv group),Kfc increased 6.2 ± 1.3 and 38.3 ± 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2%(P < 0.05) and 64.3% of that in theHigh Ppv group at these Ppv states. Residual blood volumes calculatedfrom tissue hemoglobin contents were significantly increased by53-66% in the high Ppv groups, compared with low vascularpressure controls, but there was no significant difference between HighPpv and Iso groups. Thus isoproterenol significantly attenuatedvascular pressure-induced Kfc increases atmoderate Ppv, possibly because of an endothelial effect, but it did notaffect red cell extravasation at higher vascular pressures.

  相似文献   

13.
14.
15.
Muscular K uptake depends onskeletal muscle Na-K-ATPase concentration and activity. ReducedK uptake is observed in vitro in K-depleted rats. We evaluated skeletalmuscle K clearance capacity in vivo in rats K depleted for 14 days.[3H]ouabain binding, 1 and2 Na-K-ATPase isoform abundance, and K, Na, and Mgcontent were measured in skeletal muscles. Skeletal muscle K, Na, andMg and plasma K were measured in relation to intravenous KCl infusionthat continued until animals died, i.e., maximum KCl dose wasadministered. In soleus, extensor digitorum longus (EDL), andgastrocnemius muscles K depletion significantly reduced K content by18%, 15%, and 19%, [3H]ouabain binding by 36%, 41%,and 68%, and 2 isoform abundance by 34%, 44%, and70%, respectively. No significant change was observed in1 isoform abundance. In EDL and gastrocnemius muscles Kdepletion significantly increased Na (48% and 59%) and Mg (10% and17%) content, but only tendencies to increase were observed in soleusmuscle. K-depleted rats tolerated up to a fourfold higher KCl dose.This was associated with a reduced rate of increase in plasma K andincreases in soleus, EDL, and gastrocnemius muscle K of 56%, 42%, and41%, respectively, but only tendencies to increase in controls.However, whereas K uptake was highest in K-depleted animals, the Kuptake rate was highest in controls. In vivo K depletion is associatedwith markedly increased K tolerance and K clearance despitesignificantly reduced skeletal muscle Na-K-ATPase concentration. Theconcern of an increased risk for K intoxication during K repletionseems unwarranted.

  相似文献   

16.
We recently observed that acute systemic hypoxia produces rapid increases in leukocyte adherence in the mesenteric microcirculation of the anesthetized rat Wood JG, Johnson JS, Mattioli LF, and Gonzalez NC. J Appl Physiol 87: 1734-1740, 1999; Wood JG, Mattioli LF, and Gonzalez NC. J Appl Physiol 87: 873-881, 1999. Hypoxia-induced leukocyte adherence is associated with an increase in reactive oxygen species (ROS) generation and is attenuated by antioxidants or interventions that increase tissue levels of nitric oxide (NO). These results suggest that the acute effects of hypoxia on leukocyte-endothelial interactions are caused by a change in the ROS-NO balance. The present experiments were designed to extend our observations of the initial microcirculatory response to hypoxia; specifically, we wanted to determine whether the response to systemic hypoxia involves increased microvascular permeability and leukocyte emigration and whether ROS generation and decreased NO levels contribute to these responses. At this time, there is conflicting evidence, from in vitro studies, regarding the effect of hypoxia on these indexes of vascular function. Our studies were carried out in the physiological setting of the conscious animal, in which a prolonged hypoxic exposure is possible without the adverse effects that may develop under anesthesia. The central observation of these studies is that conscious animals exposed for 4 h to environmental hypoxia show increased microvascular permeability and emigration of leukocytes into the extravascular space of the mesenteric circulation. Furthermore, these events are dependent on increased ROS generation and, possibly, a subsequent decrease in tissue NO levels during systemic hypoxia. Our results show that systemic hypoxia profoundly affects vascular endothelial function through changes in the ROS-NO balance in the conscious animal.  相似文献   

17.
In vivo pulmonary arterialcatheterization was used to determine the mechanism by whichplatelet-activating factor (PAF) produces pulmonary edema inrats. PAF induces pulmonary edema by increasing pulmonarymicrovascular permeability (PMP) without changing the pulmonarypressure gradient. Rats were cannulated for measurement of pulmonaryarterial pressure (Ppa) and mean arterial pressure. PMP wasdetermined by using either in vivo fluorescent videomicroscopy or theex vivo Evans blue dye technique. WEB 2086 was administeredintravenously (IV) to antagonize specific PAF effects. Threeexperiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAFinduced systemic hypotension with a decrease in Ppa. PMP increasedafter IV PAF in a dose-related manner. Topical PAF increased PMP butdecreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa(50 ± 3%) increased during E. coli bacteremia.PAF-receptor blockade prevents changes in Ppa and PMP after bothtopical PAF and E. coli bacteremia. PAF, which has beenshown to mediate pulmonary edema in prior studies, appears to act inthe lung by primarily increasing microvascular permeability. Thepresence of PAF might be prerequisite for pulmonary vascularconstriction during gram-negative bacteremia.

  相似文献   

18.
19.
20.
The water permeability of the lipid bilayer can be used as a probe of membrane structure. A simple model of the bilayer, the liquid hydrocarbon model, views the membrane as a thin slice of bulk hydrocarbon liquid. A previous study (Petersen, D. (1980) Biochim. Biophys. Acta 600, 666–677) showed that this model does not accurately predict the water permeability of the monoolein/n-hexadecane bilayer: the measured activation energy for water permeation is 50% above the predicted value. From this it was inferred that the hydrocarbon chains in the lipid bilayer are more ordered than in the bulk hydrocarbon liquid. The present study tests the liquid hydrocarbon model for the monoolein/triolein bilayer, which has been shown to contain very little triolein in the plane of the membrane (Waldbillig, R.C. and Szabo, G. (1979) Biochim. Biophys. Acta 557, 295–305). Measurements of the water permeability coefficient of the bilayer are compared with predictions of the liquid hydrocarbon model based on measurements of the water permeability coefficient of bulk 8-heptadecene. The predicted and measured values agree quite closely over the temperature range studied (15–35°C): the predicted activation energy is 11.1±0.2 kcal/mol, whereas the measured activation energy for the bilayer is 9.8±0.7 kcal/mol. This close agreement is in contrast with the monoolein/n-hexadecane results and suggests that, insofar as water permeation is concerned, the liquid hydrocarbon model quite closely represents the monoolein/triolein bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号