首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect on enkephalin degradation of the four highly potent organophosphorus anticholinesterases, soman, sarin, tabun and DFP was studied in synaptosomal fractions of rat brain striata. None of the agents effected any of the enkephalin degrading enzymes, the puromycin sensitive aminopeptidase, the p-hydroxymercurybenzoate (p-HMB) sensitive dipeptidyl aminopeptidase or the phosphoramidon sensitive enkephalinase. Furthermore, no peptidase function of acetylcholinesterase was found, when Leu-enkephalin was used as substrate at low concentrations (27 nM). Supporting the in vitro data, no difference was obtained in the striatal levels of Met- and Leu-enkephalin between rats receiving a high single dose of soman and controls. The results show that the analgesic effect of anticholinesterases are more likely due to mechanisms other than inhibition of enkephalin degradation.  相似文献   

2.
The effects of nineteen enkephalin analogues on the circulating levels of prolactin in the male rat following intraventricular injection of the peptides were determined and compared with that of Met- and Leu-enkephalin. Eleven of the 19 analogues stimulated prolactin secretion. It was found, in general, that the structure activity relationship for enkephalin stimulation of prolactin secretion was similar to that for opiate receptor activity. Analogues which contained a [DAla2] substitution were generally effective in stimulating prolonged prolactin release. Some, but not all analogues containing [DTrp2] or [DLeu5] were active. Analogues containing the [DTrp1], [DPhe4] or [DMet5] substitutions were ineffective. The prolactin releasing effect of intravenous Tyr-DAla-Gly-Phe-DLeu was reversed by naloxone. Naloxone had no effect on the haloperidol- and alpha-methylparatyrosine induced increases in plasma prolactin levels. The results of these studies are discussed in the light of the suggestion that the enkephalins may function as neuroendocrine modulators.  相似文献   

3.
A dipeptidyl carboxypeptidase distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane preparations of rabbit brain. The enzyme cleaved enkephalin at the Gly-Phe bond, releasing either Phe-Leu from Leu-enkephalin or Phe-Met from Met-enkephalin, and also acted on bradykinin, releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this dipeptidyl carboxypeptidase did not act on angiotensin-1, and it did not degrade hippuryl-His-Leu. Chloride ions did not affect its activity, but the enzyme was inhibited by metal chelating agents. The enzyme was not inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for this enzyme of 0.14 mM with Leu-enkephalin and 0.12 mM with bradykinin as substrates. Present data indicate that more than one enzyme is present in brain membrane fractions acting as dipeptidyl carboxypeptidases inactivating enkephalin; these data suggest multiple roles for such enzymes in the regulation of peptide metabolism.  相似文献   

4.
Partially purified extracts from neuroblastoma X glioma hybrid cells 108CC15 inhibit, like opioids, the prostaglandin E1-evoked formation of cyclic AMP in a dose-dependent manner in the same hybrid cells. The inhibition is prevented by the opioid antagonist naloxone. In addition, the same extract competes with [3H]naloxone and [3H]Leu-enkephalin for binding to opioid receptors of hybrid cell membranes and to a specific antiserum, respectively. The opioid activity in the extracts is destroyed by carboxypeptidase A and leucine aminopeptidase, but not by trypsin. Further purification of the extracts by HPLC, TLC, or high-voltage paper electrophoresis reveals in each case two active fractions which behave like Met- and Leu-enkephalin. The Met-enkephalin-like, but not the Leu-enkephalin-like, fraction is inactivated by treatment with BrCN. Dimethylaminonaphtylsulfonyl (dansyl) derivatives of Met- and Leu-enkephalin correspond to [3H]dansyl derivatives of Met-like substances from hybrid cells. Three to four times as much Met-enkephalin-like as Leu-enkephalin-like material is present in the extract. The overall concentration of opioid peptides in the hybrid cells varies between 0.03 and 1.0 pmol Leu-enkephalin equivalents per mg protein. The amount of opioids in the hybrid cells is strongly dependent on the cell density. The findings suggest that neuroblastoma X glioma hybrid cells contain opioid peptides that are very similar, if not identical, to Met- and Leu-enkephalin. Opioid activity can also be detected in other neuronal cell lines and even in glioma cells.  相似文献   

5.
R M Dores  L K McDonald  J W Crim 《Peptides》1989,10(5):951-956
Immunohistochemical analysis of the pituitary of the holostean fish, Amia calva, indicated that enkephalin-related immunoreactivity was restricted to the pars nervosa, and was not detected in other regions of the pituitary. Fractionation of acid extracts of posterior pituitaries by reverse phase HPLC followed by RIA analysis indicated the presence of immunoreactive Met-enkephalin and Leu-enkephalin. No immunoreactive forms were detected with RIAs specific for either Met-enkephalin-RF or Met-enkephalin-RGL. The molar ratio of Met- to Leu-enkephalin in this terminal field was 3:1 (n = 4). HPLC fractions were also digested with trypsin and carboxypeptidase B to test for C-terminally extended forms of Met-enkephalin. A novel modified form of Met-enkephalin was detected. Extracts of the posterior pituitary, forebrain, midbrain, hypothalamus and hindbrain were screened with RIAs specific for the Pro-dynorphin end products, alpha-neo-endorphin, dynorphin A(1-17), dynorphin A(1-8) and dynorphin B(1-13). The results of these analyses were negative. Collectively, these data suggest that a Pro-enkephalin-like molecule is present in holostean fish. The holostean enkephalin precursor contains at least Met-enkephalin and Leu-enkephalin. However, Pro-dynorphin-related end products with antigenic determinants similar to mammalian dynorphin A(1-17), dynorphin A(1-8), dynorphin B(1-13) and alpha-neo-endorphin could not be detected in the brain or pituitary of this species.  相似文献   

6.
Exposure of bovine chromaffin cells in primary culture to 0.01-1 microM reserpine caused a dose- and time-dependent increase in intracellular levels of the amidated enkephalin peptide metorphamide. Maximal levels (approximately 800% of control) were obtained at 0.1 microM reserpine and increased levels were apparent by 16 h of treatment. Metorphamide increases were at least fivefold more than that of either Met- or Leu-enkephalin, suggesting that reserpine stimulates both enkephalin processing and amidation in the secretory vesicle. Treatment with elevated potassium, which increases enkephalin levels by stimulating production of preproenkephalin messenger RNA, elicited an increase in metorphamide levels equivalent to, but not greater than, the increase in Met-enkephalin pentapeptide. The ratio of Met-enkephalin to metorphamide in untreated chromaffin cells is approximately 140:1, whereas the final Met-enkephalin: metorphamide ratio in reserpinized chromaffin cells is approximately 30:1, similar to the Met-enkephalin:metorphamide ratio in enkephalinergic neurons of the CNS.  相似文献   

7.
Enkephalinase B from rat brain membrane which hydrolyzes enkephalin at the Gly-Gly bond was purified about 9400-fold to apparent electrophoretic homogeneity. The enzyme, which has a molecular weight of 82,000, consists of a single polypeptide chain. The enzyme has a pH optimum of 6.0-6.5 and is stable in the neutral pH region. The Km values of Met-enkephalin and Leu-enkephalin for this enzyme were 5.3 X 10(-5) M and 5.0 X 10(-5) M, respectively. The enzyme was inactivated by metal chelators, EDTA and o-phenanthroline and restored by the addition of divalent metal ions, Zn2+, Mn2+ or Fe2+, but was not inhibited by bestatin, amastatin, phosphoramidon or captopril. The enzyme hydrolyzed Met-enkephalin and Leu-enkephalin effectively. Although the enzyme belongs to the dipeptidyl aminopeptidase class, enkephalin-related peptides such as Leu-enkephalin-Arg, dynorphin (1-13) or alpha-endorphin and other biologically active peptides examined were hardly, or not at all, hydrolyzed. It was assumed that enkephalinase B functions mainly in enkephalin degradation in vivo.  相似文献   

8.
We reported previously that D-Pen2-[D-Pen5]enkephalin (DPDE), a delta-opioid receptor selective analog of Leu-enkephalin, impairs acquisition of an automated jump-up avoidance response in rats and acquisition of a one-way active avoidance response in mice. In the present study we investigated the effects of DPDPE on one-way avoidance conditioning in rats. The rats received two escape-only trials on day 1 and eight additional training trials on day 2. DPDPE (1.16 micrograms/kg IP) administered prior to training on day 2 impaired acquisition of the avoidance response. On the other hand, DPDPE (0.332 microgram/kg IP) administered following presentation of the two escape-only trials on day 1 significantly enhanced retention, as measured by improved one-way active avoidance performance on day 2. These results indicate that activation of delta-opioid receptors by DPDPE has a modulatory effect on acquisition and retention of aversively motivated performance.  相似文献   

9.
The interaction of Leucine-enkephalin (Leu-enkephalin) with reactive nitrogen species has been investigated. Reactive nitrogen species are capable of nitrating and oxidizing Leu-enkephalin. HPLC analysis shows the formation of two major enkephalin derivatives by peroxynitrite. The tyrosine amino-terminal residue of Leu-enkephalin is converted either to 3-nitrotyrosine thus producing nitroenkephalin and to dityrosine by dimerization with the production of an enkephalin dimer. The evidence of the formation of the nitroenkephalin and of the enkephalin dimer—dienkephalin—was achieved by electrospray ionisation mass spectrometry. In addition to peroxynitrite, the methylene blue photosensitized oxidation of enkephalin in the presence of nitrite leads to the formation of the nitrated peptide. Moreover, the nitropeptide can be also obtained by peroxidase-generated nitrogen reactive species.  相似文献   

10.
We examined the effects of two enkephalin metabolites, des-tyr-[leu]enkephalin and tyr-gly-gly, on one-way active avoidance conditioning in mice. These metabolites are products of the two major enkephalin hydrolyzing enzymes in plasma, aminopeptidase and angiotensin converting enzyme. Like [leu]enkephalin from which it may be formed, tyr-gly-gly impaired avoidance acquisition, and its dose-response function for this effect was U-shaped. Also like [leu]enkephalin, tyr-gly-gly did not alter locomotor activity. On the other hand, des-tyr-[leu]enkephalin, at the doses tested, was without effect on avoidance conditioning but produced decreased locomotion. These data suggest that the tyrosine end of the enkephalin molecule may be important for its effects on conditioning. Because of their low opioid potencies, it is unlikely that the behavioral actions of tyr-gly-gly and des-tyr-[leu]enkephalin are mediated through opioid receptors.  相似文献   

11.
Leu-enkephalin and Met-enkephalin at a dose of 400 μg/kg i.p. significantly impaired acquisition of a one-way active avoidance response. D-Ala-D-Leu-enkephalin also impaired acquisition but at a lower dose (4 μg/kg). D-Ala-Met-enkephalinamide in a wide dose range (0.04–400 μ/kg) did not alter acquisition of the response. A high dose of naloxone (100 mg/kg) blocked the impairing action of Leu-enkephalin. These results are discussed in terms of multiple opiate receptor species.  相似文献   

12.
The purpose of these studies was to determine if two endogenous opioids, leucine (Leu) and methionine (Met) -enkephalin, alter blood pressure and, if so, by what mechanisms. Studies from our laboratory show that intravenous administration of Leu-enkephalin in doses of 0.032–320 μg/kg induced a biphasic response in pentobarbital-anesthetized cats. A transient rise in mean arterial pressure was followed by a more prolonged decline. Administration of Met-enkephalin caused only a decline in mean arterial pressure. Neither agent significantly altered heart rate, venous pressure or the EKG. Having determined that both enkephalins altered blood pressure and observed that the responses were qualitatively different, selected pharmacological antagonists were employed to see if the alterations in blood pressure could be blocked. Naloxone blocked the hypertensive responses and antagonized the hypotensive effects seen with the administration of Leu-enkephalin. Naloxone also shifted the dose-effect curve of Met-enkephalin to the right. Diphenhydramine attenuated both the hypertensive and hypotensive responses of Leu-enkephalin. However, diphenhydramine pretreatment did not alter the decline in blood pressure seen with the higher doses of Met-enkephalin. Propranolol exerted some antagonistic activity in association with the rise in blood pressure seen with Leu-enkephalin, but propranolol did not alter the drop in pressure observed with the administration of either enkephalin. These results show that intravenous administration of the enkephalins can alter blood pressure and these effects are not alike for each enkephalin. Additionally, the enkephalins are not blocked in the same fashion by antagonists, giving support to the hypothesis that the two enkephalins interact with different receptors.  相似文献   

13.
M. Benuck  M.J. Berg  N. Marks 《Life sciences》1981,28(23):2643-2650
Peptidyl dipeptidase activity distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane fractions of rabbit kidney and lung. The enzyme cleaved Leu-enkephalin at the Gly-Phe bond, releasing Tyr-Gly-Gly and Phe-Leu, and also acted on bradykinin releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this peptidyl dipeptidase did not act on angiotensin I, or on hippuryl His-Leu, nor was it inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for the kidney enzyme of 80 μM with Leu-enkephalin as a substrate. Our findings indicate that more than one enzyme is present in membrane preparations of lung and kidney inactivating enkephalin, and suggest a role for these enzymes in the peripheral actions of opiate and related peptides.  相似文献   

14.
本工作在戊巴比妥钠麻醉的家兔上进行。采用夹闭肠系膜上动脉阻断血流方法建立内毒紫休克的实验模型。用放射免疫分析法测定了休克前后脑区、脑脊液及血浆中脑啡肽含量的变化,并观察了脑室或静脉注射纳洛酮的抗休克效应。结果如下:1.休克时,下丘脑、延脑、桥脑的亮脑啡肽含量显著升高,中脑无明显变化、丘脑、纹状体下降。脑脊液和血浆中亮脑啡肽明显增加。外周静脉血与肾静脉血中无显著差别。2.侧脑室或静脉注射纳洛酮,均可使休克动物的血压回升,延长存活时间。脑室注射的升压数值略大,维持升压时间也较长。实验结果提示:脑啡肽参与内毒素休克过程。断阿片样物质的作用,可能是治疗内毒素休克的一个途径。  相似文献   

15.
Leucine- and methionine-enkephalins inhibit the Na+-dependent transport of proline into plasma membrane vesicles derived from synaptosomes. Glycine transport is weakly inhibited by enkephalins whereas there is no inhibition of transport of glutamic acid, aspartic acid, or gamma-aminobutyric acid. The inhibition of proline uptake is observed with des-tyrosyl-enkephalins but not with morphine, dynorphin(1-13), or beta-endorphins. Furthermore, enkephalin-induced inhibition of proline transport is not antagonized by naloxone. [Leu]enkephalinamide and modified [Leu]enkephalins with greater selectivity for the delta-subclass of enkephalin binding sites are less effective than [Leu]enkephalin in the inhibition of proline transport. Specific binding of [3H]Leu-enkephalin to the plasma membrane vesicles is demonstrated, and des-Tyr-[Leu]enkephalin competes with Leu-enkephalin for [Leu]enkephalin binding sites. The similarity in the concentrations of des-Tyr-[Leu]enkephalin required to compete for specific [Leu]enkephalin binding and to inhibit proline transport suggests that a specific subclass of enkephalin binding sites, distinguished by their recognition of both the enkephalins and their des-tyrosyl derivatives, may be associated with the synaptic proline transport system.  相似文献   

16.
The binding and the insulinotropic effects of enkephalin analogs and of morphine were investigated in rat pancreatic islets. Binding of [3H]Met-enkephalin was saturable, specific and reversible; the rank order for inhibition competition of [3H]Met-enkephalin binding by various compounds was Met-enkephalin = D-Ala2-MePhe4, Met(0)ol enkephalin) greater than Leu-enkephalin greater than morphine with half-maximal inhibitory constants (IC50) of approx. 0.3, 0.3, 100 and greater than 100 nM, respectively. Both the natural enkephalins exerted their insulinotropic effect only at stimulatory glucose concentrations. They had a dual action; whereas insulin secretion was increased at low enkephalin concentration, this effect was reversed at higher concentrations. However, the various enkephalins exerted this effect at different concentrations; only the EC50 values (half-maximal effective concentrations) of their insulinotropic effect were in the same range as the IC50 values of inhibition of [3H]met-enkephalin binding. Cysteamine pretreatment of rats (depletion of somatostatin containing D-cells and decrease in somatostatin secretion) did not change the Met-enkephalin effect on insulin secretion. In contrast to Met-enkephalin, binding of [3H]morphine to islets was not saturable, and morphine had no effect on insulin secretion unless at unphysiologically high concentrations. The data, therefore, indicate that: mu-receptors (affinity for morphine) do not play a role in rat pancreatic islets; delta-receptors (binding site for Met-enkephalin when mu-receptors are not present) mediate the insulinotropic effect of low Met-enkephalin concentrations; and the insulinotropic action of Met-enkephalin is not mediated indirectly via the paracrine effect of an inhibition of somatostatin secretion.  相似文献   

17.
Ethanol administration has been shown to affect beta-endorphin (beta-E) levels in most brain areas. Chronic ethanol treatment has also lead to changes in the levels of Met- and Leu-enkephalin which may be due to recent finding that enkephalin A activity is significantly altered. To determine if proteolytic enzymes responsible for beta-E metabolism at the pSPM are also altered, we studied the effect of chronic ethanol (7% v/v; 8 days) administration on in vitro central beta-E metabolism in male C57/BL mice. Purified SPM was time-course incubated with beta-E (20 microM) for 30-120 min and subjected to HPLC analyses for determination of beta-endorphin and related fragments. Chronic ethanol significantly reduced the half-life for beta-E at the pSPM (T1/2 = 50/min) versus controls (T1/2 = 100.4 min). Chronic ethanol also caused significant accumulation of the behaviorally active alpha- and gamma-type endorphins formed at the pSPM. These results suggest that chronic ethanol treatment leads to an increase in the activity of peptidases responsible for beta-E metabolism at pSPM leading to an increased formation of both alpha- and gamma-type endorphins which may affect alcohol related behaviors.  相似文献   

18.
Characterization of carboxypeptidase A6, an extracellular matrix peptidase   总被引:1,自引:0,他引:1  
Carboxypeptidase A6 (CPA6) is a member of the M14 metallocarboxypeptidase family that is highly expressed in the adult mouse olfactory bulb and broadly expressed in embryonic brain and other tissues. A disruption in the human CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. In this study the cellular distribution, processing, and substrate specificity of human CPA6 were investigated. The 50-kDa pro-CPA6 is routed through the constitutive secretory pathway, processed by furin or a furin-like enzyme into the 37-kDa active form, and secreted into the extracellular matrix. CPA6 cleaves the C-terminal residue from a range of substrates, including small synthetic substrates, larger peptides, and proteins. CPA6 has a preference for large hydrophobic C-terminal amino acids as well as histidine. Peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides were found to be processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. Whereas CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, CPA6 converts inactive angiotensin I into the biologically active angiotensin II. Taken together, these data suggest a role for CPA6 in the regulation of neuropeptides in the extracellular environment within the olfactory bulb and other parts of the brain.  相似文献   

19.
Carboxypeptidase H is one of several enzymes required for the processing of peptide hormone precursors. In this study, inhibition of carboxypeptidase H by its peptide products was investigated. Carboxypeptidase H activity in bovine adrenal medulla chromaffin granules and rat adrenal medulla homogenate was inhibited by the peptides Met- and Leu-enkephalin, vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone, with oxytocin and ACTH 1-14 having the least effect, at concentrations of 2-20 mM. Inhibition by amidated peptide products (vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone) show that the final products of the precursor processing pathway can regulate carboxypeptidase H. These levels of peptides are similar to known intragranular peptide concentrations indicating that product and feedback inhibition of carboxypeptidase H may play a role in the control of neuropeptide synthesis. The proenkephalin-derived peptides Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, and Met-enkephalin-Arg6-Phe7 competitively inhibited bovine and rat carboxypeptidase H with Ki values of 12.0, 6.5, 7.0, and 5.5 mM, respectively. The significantly greater Ki for Met-enkephalin may reflect the effects of higher intragranular concentration of Met-enkephalin, since one proenkephalin molecule contains four copies of Met-enkephalin and only one copy of each of the other enkephalin peptides. Thus, the products from one multivalent precursor molecule may equivalently inhibit carboxypeptidase H activity. Product inhibition of carboxypeptidase H and perhaps other processing enzymes may serve to limit the maximum peptide concentration within the secretory vesicle.  相似文献   

20.
The opioid modulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. The K(+)-induced [3H]histamine release from cortical slices was progressively inhibited by the preferential kappa-agonists ketocyclazocine, dynorphin A (1-13), Cambridge 20, spiradoline, U50,488H, and U69,593 in increasing concentrations. In contrast, the mu-agonists morphine, morphiceptin, and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) were ineffective as were the preferential delta-agonists [D-Ala2,D-Leu5]enkephalin (DA-DLE) and [D-Pen2,D-Pen5]enkephalin (DPDPE). Nor-binaltorphimine (nor-BNI) and MR 2266, two preferential kappa-antagonists, reversed the inhibitory effect of the various kappa-agonists more potently than did naloxone, with mean Ki values of 4 nM and 25 nM, respectively. The effects of ketocyclazocine and naloxone also were seen in slices of rat striatum, another brain region known to contain histaminergic nerve endings. We conclude that kappa-opioid receptors, presumably located on histaminergic axons, control histamine release in the brain. However, nor-BNI and naloxone failed, when added alone, to enhance significantly [3H]histamine release from cerebral cortex or striatum, and bestatin, an aminopeptidase inhibitor, failed to decrease K(+)-evoked [3H]histamine release. These two findings suggest that under basal conditions these kappa-opioid receptors are not tonically activated by endogenous dynorphin peptides. The inhibition of cerebral histamine release by kappa-agonists may mediate the sedative actions of these agents in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号