首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity has been associated with an increased risk of osteoarthritis (OA). However, the mechanism by which obesity contributes to OA remains uncertain. Adiponectin, an adipocyte-derived hormone, has shown anti-diabetic and anti-atherogenic properties. In the present study, we aimed to investigate the potential role of adiponectin in OA disease. We demonstrated that adiponectin was present in OA synovial fluid (SF) and its expression level was almost 100-fold decrease compared with that in OA plasma. FPLC and ELISA studies revealed the distribution and abundance of the adiponectin complexes in plasma and SF from patients with OA. The percentage of high molecular weight (HMW) per total adiponectin in OA SF was lower than in OA plasma, while that of the hexamer form was similar and the trimer form was higher. The expression levels of adiponectin receptors AdipoR1 and AdipoR2 were examined in human OA tissues by RT-PCR. AdipoR1 was abundantly expressed in cartilage, bone and synovial tissues, whereas AdipoR2 was rarely detected. Finally, the effects of adiponectin on primary chondrocyte functions were studied by using antibody-based protein array and RT-PCR. The patterns of mRNA expression and protein production strongly indicate that adiponectin is involved in the modulation of cartilage destruction in chondrocytes by up-regulating TIMP-2 and down-regulating IL-1beta-induced MMP-13. Together these findings clearly indicate that the adiponectin may act as a protective role in the progression of OA, and this also provide new thinking on the relationship between obesity and OA.  相似文献   

2.
Ozturk K  Avcu F  Ural AU 《Cytokine》2012,57(1):61-67

Background

Leptin and adiponectin receptors mediate the role of leptin in stimulating the growth of leukemic cells and the protective function of adiponectin undertaken in several malignancies such as leukemia. In this study, we investigated the involvement of the expression of leptin and adiponectin receptors in chronic myeloid leukemia (CML) pathogenesis.

Methods

The expression of leptin receptor isoforms, OB-Rt, OB-Ra, and OB-Rb, and the expression of adiponectin receptors, AdipoR1 and AdipoR2, were measured as mRNA levels in two CML cell lines (K562 and Meg-01) and 20 CML patients and 24 healthy controls by using RT-PCR.

Results

OB-Rt and OB-Ra isoforms expression of the leptin receptors were found to be significantly lower in Meg-01 cell lines than K562 cells. All leptin receptors were downregulated in CML patients and more particularly OB-Rb level was found to be undetectably low in normal PBMC as well as in CML patients. AdipoR1 expression level was higher in Meg-01 than in K562, whereas AdipoR2 level was found to be unchanged in both cell lines. Interestingly, while AdipoR1 expression increased in CML patients, AdipoR2 decreased. Moreover, imatinib therapy did not affect both leptin and adiponectin isoform expressions.

Conclusion

While the decrease in leptin receptor levels in CML patients was confirmed, the increase in AdipoR1 levels and relevant decrease in AdipoR2 levels depicted their possible involvement in CML pathogenesis. This suggests different functions of adiponectin receptors in CML development.  相似文献   

3.
Adiponectin, an adipocyte-derived protein, has cardioprotective actions. We elucidated the role of the adiponectin receptors AdipoR1 and AdipoR2 in the effects of adiponectin on endothelin-1 (ET-1)-induced hypertrophy in cultured cardiomyocytes, and we examined the expression of adiponectin receptors in normal and infarcted mouse hearts. Recombinant full-length adiponectin suppressed the ET-1-induced increase in cell surface area and [(3)H]leucine incorporation into cultured cardiomyocytes compared with cells treated with ET-1 alone. Transfection of small interfering RNA (siRNA) specific for AdipoR1 or AdipoR2 reversed the suppressive effects of adiponectin on ET-1-induced cellular hypertrophy in cultured cardiomyocytes. Adiponectin induced phosphorylation of AMP-activated protein kinase (AMPK) and inhibited ET-1-induced ERK1/2 phosphorylation, which were also reversible by transfection of siRNA for AdipoR1 or AdipoR2 in cultured cardiomyocytes. Transfection of siRNA for alpha(2)-catalytic subunits of AMPK reduced the inhibitory effects of adiponectin on ET-1-induced cellular hypertrophy and ERK1/2 phosphorylation. Effects of globular adiponectin were similar to those of full-length adiponectin, and siRNA for AdipoR1 reversed the actions of globular adiponectin. Compared with normal left ventricle, expression levels of AdipoR1 mRNA and protein were decreased in the remote, as well as the infarcted, area after myocardial infarction in mouse hearts. In conclusion, AdipoR1 and AdipoR2 mediate the suppressive effects of full-length and globular adiponectin on ET-1-induced hypertrophy in cultured cardiomyocytes, and AMPK is involved in signal transduction through these receptors. AdipoR1 and AdipoR2 might play a role in the pathogenesis of ET-1-related cardiomyocyte hypertrophy after myocardial infarction.  相似文献   

4.
Effects of exercise on adiponectin and adiponectin receptor levels in rats   总被引:4,自引:0,他引:4  
Adiponectin reportedly reduces insulin-resistance. Exercise has also been shown to lessen insulin-resistance, though it is not known whether exercise increases levels of adiponectin and/or its receptors or whether its effects are dependent on exercise intensity and/or frequency. Catecholamine levels have been shown to increase during exercise and to fluctuate based on exercise intensity and duration. In light of this information, we examined the effects of exercise on catecholamine, adiponectin, and adiponectin receptor levels in rats. Our data showed that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 min 2 days per week, but not 5 days, per week; no such increase was observed in rats that exercised at a rate of 25 m/min for 30 min. The effects of exercise on adiponectin receptor mRNA were variable, with adiponectin receptor 1 (AdipoR1) levels in muscle increasing up to 4 times while adiponectin receptor 2 (AdipoR2) levels in liver fell to below half in response to exercise at a rate of 25 m/min for 30 min 5 days per week. We also observed that urinary epinephrine levels and plasma lipids were elevated by exercise at a rate of 25 m/min for 30 min 2 days per week. Exercise frequency at a rate of 25 m/min for 30 min correlated with AdipoR1 and AdipoR2 mRNA expression in the muscle and liver, respectively (r=0.640, p<0.05 and r=-0.808, p<0.0005, respectively). Urinary epinephrine levels correlated with AdipoR2 mRNA expression in liver tissues (r=-0.664, p<0.05) in rats that exercised at a rate of 25 m/min for 30 min. Thus, exercise may regulate adiponectin receptor mRNA expression in tissues, which might cause increases in glucose uptake and fatty acid oxidation in the muscle. The effect of exercise on adiponectin levels depends on the specific conditions of the exercise.  相似文献   

5.
Adp (adiponectin), an adipocyte‐secreted hormone, exerts its effect via its specific receptors, AdipoR1 and AdipoR2 (adiponectin receptors 1 and 2), on insulin‐sensitive cells in muscle, liver and adipose tissues, and plays an important role in lipid and glucose metabolisms. The study has investigated the effect of insulin on AdipoRs expression in muscle and fat cells. Differentiated fat [3T3‐L1 (mouse adipocytes)], L6 (skeletal muscle) and vascular smooth muscle (PAC1) cells were serum starved and exposed to 100 nM insulin for 1–24 h. AdipoR1 and AdipoR2 mRNAs expression was monitored by real‐time PCR. The results demonstrate that insulin down‐regulates both AdipoR1 and AdipoR2 mRNAs levels in a biphasic manner in L6 and PAC1 cells. Insulin had little or no effect in the regulation of AdipoR1 expression in 3T3‐L1 cells, but significantly up‐regulated AdipoR2 mRNA level in a biphasic manner. The fact that insulin differentially regulates the expression of AdipoR1 and AdipoR2 in muscle and fat cells suggests this is also dependent on the availability of the endogenous ligand, such as Adp for AdipoR1 and AdipoR2 in fat cells. The effects of globular Adp were also tested on insulin‐regulated expression of AdipoRs in L6 cells, and found to up‐regulate and counter insulin‐mediated suppression of AdipoRs expression in L6 cells.  相似文献   

6.
Kudoh A  Satoh H  Hirai H  Watanabe T 《Life sciences》2011,88(23-24):1055-1062
AimsPioglitazone, a full peroxisome proliferator-activated receptor (PPAR)-γ agonist, improves insulin sensitivity by increasing circulating adiponectin levels. However, the molecular mechanisms by which pioglitazone induces insulin sensitization are not fully understood. In this study, we investigated whether pioglitazone improves insulin resistance via upregulation of either 2 distinct receptors for adiponectin (AdipoR1 or AdipoR2) expression in 3T3-L1 adipocytes.Main methodsGlucose uptake was evaluated by 2-[3H] deoxy-glucose uptake assay in 3T3-L1 adipocytes with pioglitazone treatment. AdipoR1 and AdipoR2 mRNA expressions were analyzed by qRT–PCR.Key findingsWe first confirmed that pioglitazone significantly increased insulin-induced 2-deoxyglucose (2-DOG) uptake in 3T3-L1 adipocytes. Next, we investigated the mRNA expression and regulation of AdipoR1 and AdipoR2 after treatment with pioglitazone. Interestingly, pioglitazone significantly induced AdipoR2 expression but it did not affect AdipoR1 expression. In addition, adenovirus-mediated PPARγ expression significantly enhanced the effects of pioglitazone on insulin-stimulated 2-DOG uptake and AdipoR2 expression in 3T3-L1 adipocytes. These data suggest that pioglitazone enhances adiponectin's autocrine and paracrine actions in 3T3-L1 adipocytes via upregulation of PPARγ-mediated AdipoR2 expression. Furthermore, we found that pioglitazone significantly increased AMP-activated protein kinase (AMPK) phosphorylation in insulin-stimulated 3T3-L1 adipocytes, but it did not lead to the phosphorylation of IRS-1, Akt, or protein kinase Cλ/ζ.SignificanceOur results suggest that pioglitazone increases insulin sensitivity, at least partly, by PPARγ-AdipoR2-mediated AMPK phosphorylation in 3T3-L1 adipocytes. In conclusion, the upregulation of AdipoR2 expression may be one of the mechanisms by which pioglitazone improves insulin resistance in 3T3-L1 adipocytes.  相似文献   

7.
Adiponectin circulates as trimer (LMW), hexamer (MMW) and high molecular weight multimer (HMW) but the distribution and effects of these isoforms have not been studied in detail. Monocytes were isolated from normal weight and overweight controls and patients with type 2 diabetes mellitus (T2D) and monocytic release of IL-6 positively correlated with the body mass index (BMI). HMW-adiponectin further enhanced and LMW-adiponectin reduced IL-6 release in monocytes. Systemic total adiponectin, and the HMW isoform were not different in these groups but MMW-adiponectin was lower in T2D, and LMW-adiponectin was reduced in the obese and T2D. Circulating LMW-adiponectin negatively correlated to monocytic IL-6 release. Systemic IL-6 was higher in the obese control group and T2D, respectively, but did not correlate with monocytic IL-6 secretion. Therefore, the current study indicates that HMW-adiponectin exerts pro- and LMW-adiponectin antiinflammatory effects and reduced LMW-adiponectin in obesity may partly contribute to elevated monocytic IL-6 release.  相似文献   

8.
Adiponectin is an adipocyte-derived factor that plays pivotal roles in lipid and glucose metabolism in muscle and liver. The following two adiponectin receptor types were recently identified: AdipoR1 is abundantly expressed in muscle, whereas AdipoR2 is predominantly expressed in the liver. To clarify the regulation of adiponectin receptor gene expression in diabetic states, we examined mRNA levels of AdipoR1 in the muscles of diabetic animals by Northern blotting. The level of AdipoR1 mRNA was increased approximately 2.5-fold in muscle of streptozotocin (STZ) diabetic mice, but the normal level was restored by insulin administration, indicating that insulin has an inhibitory effect on AdipoR1 expression. To confirm this inhibitory effect of insulin, we performed in vitro experiments using C2C12 skeletal muscle cells. Insulin treatment for 24 h decreased AdipoR1 expression by approximately 60% in C2C12 cells. In addition, this effect was mediated by the phosphatidylinositol 3-kinase-dependent pathway rather than the mitogen-activated protein kinase pathway. AdipoR1 expression in insulin-resistant diabetic mice was also investigated. AdipoR1 expression was decreased by 36% in type 2 diabetic obese db/db mice compared with lean mice. In contrast, hepatic AdipoR2 expression was not significantly changed in either STZ mice or genetically obese mice. Our results indicate that regulation of AdipoR1, but not that of AdipoR2, may be involved in glucose and lipid metabolism in diabetic states.  相似文献   

9.
10.
Adiponectin and its receptors play an important role in energy homeostasis and insulin resistance, but their regulation remains to be fully elucidated. We hypothesized that high-fat diet would decrease adiponectin but increase adiponectin receptor (AdipoR1 and AdipoR2) expression in diet-induced obesity (DIO)-prone C57BL/6J and DIO-resistant A/J mice. We found that circulating adiponectin and adiponectin expression in white adipose tissue are higher at baseline in C57BL/6J mice compared with A/J mice. Circulating adiponectin increases at 10 wk but decreases at 18 wk in response to advancing age and high-fat feeding. However, adiponectin levels corrected for visceral fat mass and adiponectin mRNA expression in WAT are affected by high-fat feeding only, with both being decreased after 10 wk in C57BL/6J mice. Muscle AdipoR1 expression in both C57BL/6J and A/J mice and liver adipoR1 expression in C57BL/6J mice increase at 18 wk of age. High-fat feeding increases both AdipoR1 and AdipoR2 expression in liver in both strains of mice and increases muscle AdipoR1 expression in C57BL/6J mice after 18 wk. Thus advanced age and high-fat feeding, both of which are factors that predispose humans to obesity and insulin resistance, are associated with decreasing adiponectin and increasing AdipoR1 and/or AdipoR2 levels.  相似文献   

11.
Background  Adiponectin is an adipocyte-derived hormone that affects regulation of metabolic syndrome such as insulin resistance, type-2 diabetes, and obesity. It functions via seven transmembrane domain receptors [i.e., adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2)] that have been scarcely investigated in non-human primates.
Methods  Molecular cloning of cDNAs for adiponectin, AdipoR1, and AdipoR2 that included the whole protein-coding region in the Japanese monkey, Macaca fuscata , was carried out. Tissue-specific expression of respective genes was analyzed with Northern blot hybridization.
Results  The essential Cys36 and four lysine residues in adiponectin, and transmembrane-spanning domains in AdipoR1 and AdipoR2 appear well conserved. While adiponectin mRNA is expressed only in adipose tissues, AdipoR1 mRNA was found to be expressed in various tissues including the brain.
Conclusions  These results significantly add to the understanding of the molecular basis of obesity-related adipokines and their receptors in non-human primates.  相似文献   

12.
Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.  相似文献   

13.
Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 μg/mL) or leptin (2.5 μg/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real‐time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8‐fold and 2.5‐fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese‐prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.  相似文献   

14.
Adiponectin and its receptors (AdipoR1 and AdipoR2) are novel endocrine systems that act at various levels to control male and female fertility. The aim of this study was to determine whether adiponectin and its receptors gene expression levels differ between dominant follicle (DF) and atretic follicle (AF) and also between oocytes which were stained positively and negatively with brilliant cresyl blue (BCB(+) and BCB(-)). Based on estradiol/progesterone ratio, follicles from ovaries were classified as AFs and DFs. The stages of estrous cycle (follicular or luteal phases) were defined by macroscopic observation of the ovaries and the uterus. Oocytes were stained with BCB for 90 min. The relative expression of adiponectin, AdipoR1 and AdipoR2 mRNA in theca and cumulus cells and oocytes of different follicles were determined by quantitative real time PCR. Adiponectin and its receptors genes were clearly expressed higher (P<0.05) in theca and cumulus cells and oocytes of DFs than those of AFs during the follicular and luteal phases. BCB(+) oocytes showed a higher (P<0.05) expression of adiponectin and its receptors compared with their BCB(-) counterparts. Positive correlation (r>0.725, P<0.001) was observed between adiponectin mRNA level in ovarian cells of DFs and follicular fluid E2 concentration in follicular phase. Adiponectin mRNA abundance in ovarian cells of AFs showed a significant negative correlation with follicular fluid progesterone concentration in follicular and luteal phases (r<-0.731, P<0.001). This work has revealed the novel association of adiponectin and its receptors genes with follicular dominance and oocyte competence, thereby opening several new avenues of research into the mechanisms of dominance and competence in animal and human.  相似文献   

15.
Adiponectin was reported recently to have roles in the pathophysiology of preeclampsia. Moreover, elevation of adiponectin and brain natriuretic peptide (BNP) has been observed in preeclampsia. We examined the possible links between adiponectin and BNP in the pathophysiology of preeclampsia. We performed a cross-sectional study in 56 preeclampsia patients and 56 controls matched for gestational age and body mass index. The BNP, leptin, and adiponectin levels were measured by ELISA, and their mRNA expressions were evaluated in omental adipose tissue by real-time PCR. The effects of BNP on adiponectin and leptin mRNA expression and secretion were investigated in primary cultures of adipocytes from obese and normal-weight women. The BNP, adiponectin, and leptin levels were significantly higher in preeclampsia patients compared with controls. The adiponectin level was increased significantly in normal-weight preeclampsia patients compared with overweight preeclampsia patients. Adiponectin mRNA expression was increased significantly in adipose tissues of preeclampsia patients compared with controls and was also increased significantly in normal-weight preeclampsia patients compared with overweight preeclampsia patients, whereas leptin was not. BNP and adiponectin showed significant positive correlations in both normal-weight and overweight preeclampsia patients. BNP had a significantly weaker effect on adiponectin in overweight compared with normal-weight preeclampsia patients. Moreover, BNP had a weaker effect on adiponectin production in adipocytes from overweight women compared with adipocytes from normal-weight women using primary culture of human adipocytes. These data suggested that BNP may play a role in hyperadiponectinemia of preeclampsia patients. The weaker effect of BNP on adiponectin production may participate in the pathophysiology of overweight preeclampsia patients.  相似文献   

16.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

17.
18.
TNF-alpha alters visfatin and adiponectin levels in human fat.   总被引:11,自引:0,他引:11  
Adiponectin and visfatin are newly discovered adipokines that are strongly expressed in human visceral adipose tissue. To identify new regulatory mechanisms in fat, the effect of TNF-alpha (TNF) on adiponectin, on its two receptors, and on visfatin was investigated by incubating human visceral adipose tissue from patients without diabetes mellitus with TNF for 24, 48 and 72 hours. The mRNA expression of visfatin, adiponectin, and its two receptors, as well as the protein expression of adiponectin were determined. A decrease of adiponectin mRNA expression of 97% after incubation with TNF (5.75 nmol/l) for 24 hours, a decrease of 91% after 48 hours, and a decrease of 96% after 72 hours were measured. The reduction of protein expression was measured to be 42% after 24 hours, 28% after 48 hours, and 39% after 72 hours of incubation with TNF (5.75 nmol/l). The mRNA level of adiponectin receptor 1 (AdipoR1) was elevated about 72% after 48 hours of incubation and 67% after 72 hours of incubation, whereas the mRNA expression of adiponectin receptor 2 (AdipoR2) was not altered significantly. The visfatin mRNA level was found to be highly increased by 255% after 24 hours and 335% after 48 hours and 341% after 72 hours of incubation with TNF (5.75 nmol/l). Our results support the concept of visceral adipose tissue as an endocrine organ. We demonstrate that TNF has regulatory functions on adiponectin, AdipoR1 and on visfatin in human visceral adipose tissue. TNF levels are elevated in states of obesity and insulin resistance. Due to this fact TNF could be the reason that there is a decrease in the level of adiponectin, whereas there is an increase in the level of visfatin in states of obesity and insulin resistance.  相似文献   

19.
The adipokine adiponectin is well known to affect the function of immune cells and upregulation of CCL2 by adiponectin in monocytes/macrophages has already been reported. In the current study the effect of adiponectin on CCL2, -3, -4, and -5 and their corresponding receptors CCR1, CCR2, and CCR5 has been analyzed. Adiponectin elevates mRNA and protein of the CC chemokines in primary human monocytes. Simultaneously the surface abundance of CCR2 and CCR5 is reduced while CCR1 is not affected. Downregulation of CCR2 by adiponectin is blocked by a CCR2 antagonist although expression of the CCL2 regulated genes CCR2 and TGF-beta 1 is not altered in the adiponectin-incubated monocytes. CCL2, -3, and -5 concentrations measured in supernatants of monocytes of normal-weight (NW), overweight (OW), and type 2 diabetic (T2D) patients positively correlate with BMI and are increased in obesity and T2D. In contrast CCL4 is similarly abundant in the supernatants of all of these monocytes. The degree of adiponectin-mediated induction of the chemokines CCL3, -4, and -5 negatively correlates with their basal levels and upregulation of CCL3 and CCL5 is significantly impaired in OW and T2D cells. Serum concentrations of these chemokines are almost equal in the three groups and do not correlate with the levels in monocyte supernatants. In conclusion these data demonstrate that adiponectin stimulates release of CCL2 to CCL5 in primary human monocytes, and induction in cells of overweight probands is partly impaired. Adiponectin also lowers surface abundance of CCR2 and CCR5 and downregulation of CCR2 seems to depend on autocrine/paracrine effects of CCL2.  相似文献   

20.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in macrophages where they control cholesterol homeostasis and inflammation. In an attempt to identify new PPARalpha and PPARgamma target genes in macrophages, a DNA array-based global gene expression profiling experiment was performed on human primary macrophages treated with specific PPARalpha and PPARgamma agonists. Surprisingly, AdipoR2, one of the two recently identified receptors for adiponectin, an adipocyte-specific secreted hormone with anti-diabetic and anti-atherogenic activities, was found to be induced by both PPARalpha and PPARgamma. AdipoR2 induction by PPARalpha and PPARgamma in primary and THP-1 macrophages was confirmed by Q-PCR analysis. Interestingly, treatment with a synthetic LXR agonist induced the expression of both AdipoR1 and AdipoR2. Furthermore, co-incubation with a PPARalpha ligand and adiponectin resulted in an additive effect on the reduction of macrophage cholesteryl ester content. Finally, AdipoR1 and AdipoR2 are both present in human atherosclerotic lesions. Moreover, AdipoR1 is more abundant than AdipoR2 in monocytes and its expression decreases upon differentiation into macrophages, whereas AdipoR2 remains constant. In conclusion, AdipoR1 and AdipoR2 are expressed in human atherosclerotic lesions and macrophages and can be modulated by PPAR and LXR ligands, thus identifying a mechanism of crosstalk between adiponectin and these nuclear receptor signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号