首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational transition of poly-L -tyrosine in 0.1M KCl was investigated by ORD and infrared spectroscopy, potentiometric titration, and sedimentation velocity experiments. It is shown that the fully ordered conformer is obtained by slow titration of the random coil with 0.1N HCl at 25°C. The charge-induced transition, at variance with other poly-α-amino acids, is completed in a narrow range of α. An aggregation process was detected both by potentiometric titration and sedimentation velocity. The polyamino acid aggregates around α = 0.7 at 25°C when the conformational transition is almost complete. Infrared spectra, in the region of the amide I band (1650 cm?1) showed that the transition is a random coil → antiparallel β one. Evidence exists that the form is of the intramolecular type. The foregoing interpretations of ORD and CD spectra in terms of the α-helix conformation are discussed.  相似文献   

2.
H Maeda  S Ikeda 《Biopolymers》1971,10(12):2525-2536
Potentiometric titration curves have been determined for aqueous solutions of poly-S-carboxyethyl-L -cysteine, which is subject to the β-coil transition by a change in pH. Reversibility and time dependence of the titration curves are examined by different methods in order to establish the conditions for obtaining equilibrium curves. The β-coil transition is manifest, at some region on the equilibrium titration curve, if pH – log (α/1 – α) is plotted against α. Assuming a value, 4.00, for pKint, the free-energy change for the β-coil transition of uncharged polymer has been evaluated from the extrapolation of the observed titration curves and is found to depend on the ionic strength and polymer concentration. The Henderson-Hasselbach plot of the titration curve yields clearer distinction between the β-form and random coil, and it permits estimation of the content of β-form at, a given pH. Comparison of the conformational titration curve with the circular dichroic measurements leads to a value of ?10,000° for [θ]223 for the pure β-structure. Precipitation which occurs at low degrees of ionization and, especially, at high ionic strength does not reveal any discontinuous change of the titration curve, which suggests that, the degree of ionization of the precipitated β-form is not very different from that in solution.  相似文献   

3.
E Patton  H E Auer 《Biopolymers》1975,14(4):849-869
Poly(L -tyrosine) [(L -Tyr)n] has been characterized in aqueous solution using circular dichroism (CD) and infrared (ir) spectroscopy, and ultracentrifugal analysis. Most of the experiments were carried out at 0.01% polymer or less to avoid the complications caused by precipitation previously encountered by others. This permitted us to study solutions of (L -Tyr)n at lower pH values than had been attained previously. Our results show that a transition to an antiparallel-β conformation occurs at pH 11.32 upon titration from higher pH. The β structure is intramolecular when first formed and aggregates with time or upon titration below pH 11. Ultracentrifugal analysis of the intramolecular β conformation shows that it is quite compact, with a frictional coefficient ratio, f/fmin, of 1.09. In addition to the β structure, a nonordered form of the polymer has been obtained below pH 11 by rapid titration of the ionized polyelectrolyte. This form is nonaggregated and was found to have an f/fmin of 1.01, and is therefore almost spherical. The aggregated β form was found to be thermodynamically more stable than the nonordered form at pH 10.7.  相似文献   

4.
P Y Chou  H A Scheraga 《Biopolymers》1971,10(4):657-680
The heat ΔH° for converting an uncharged lysine residue from a coil to an α-helical state in poly-L -lysine in 0.1N KCl has been determined calorimetrically to be ?1200 cal/mole at both 15°C and 25°C. Essentially the same value has been obtained for the conversion of an uncharged residue from a coil to a β-pleated sheet state. Titration data provided information about the state of charge of the polymer in the calorimetric experiments, and optical rotatory dispersion data about its conformation. In order to compute ΔH°, the observed Calorimetric heat was corrected for the heat of breaking the sample cell, the heal of dilution of HCl, the heat of neutralization of OH? ion, and the heat of ionization of the ε-amino group in the random coil. The latter was obtained from similar Calorimetric measurements on poly-D ,L -lysine, which was shown to be a good model for the random coil form of poly-L -lysine. The measured transition heat was ~0.7 cal., which is only 7% of the total heat liberated when a 40 ml solution of 0.25% w/v poly-L -lysine is brought, from pH 11 to pH 7; nevertheless it could be determined with a precision of ±8%. The conformation of poly-L -lysine at pH 11 appears to be completely helical at 15°C, but a mixture of 90% α-helix, 5% β form, and 5% coil at 25°C. Since ΔH° ~ 0 for the α ? β conversion, the polymer behaves like one of 95% α-helix and 5% coil in the calorimeter at 25°C. At neutral pH, poly-L -lysine is an extended coil, like poly-D ,L -lysine.  相似文献   

5.
H Yamamoto  T Hayakawa 《Biopolymers》1972,11(6):1259-1268
The solvent-and pH-induced conformational changes are examined in order to investigate the influence of benzyl group. Polymer was prepared via N?-benzyloxycarbonyl, N?-benzyl-Nα-carboxy-L -lysine anhydride. The resulting poly (N?-benzyloxycarbonyl, N?-benzyl-L -lysine) was obtained in high yield and had a high molecular weight. The protected polymer was removed into poly (N?-benzyl-L -lysine) by treating it with hydrogen bromide. From the results of the ORD and CD, the protected polymer has a righthanded α-helix, showing [m′]233 = –10,300, [θ]220 = –27,600 and [θ]207 = –25,100 in dioxane. The breakdown of the helical conformation is found to occur at 8% dichloroacetic acid in chloroform-dichloroacetic acid mixture. In the pH range 3.35–6.90, poly (N?-benzyl-L -lysine) is in a random coil structure. In the pH range 7.50–13.0, the polypeptide has a right-handed α-helix structure; [m′]233 = –12,000, [0]220 = –27,200, and [0]207 = –27,000. In comparison with poly-L -lysine, the coil-to-helix transition is observed at lower pH range in 50% n-propanol. Above pH 8 by heating, the α ? β transition of poly (N?-benzyl-L -lysine) is not observed in an aqueous media.  相似文献   

6.
Conformational studies of poly-L-alanine in water   总被引:5,自引:0,他引:5  
The conformational properties of poly-L -alanine have been examined in aqueous solutions in order to investigate the influence of hydrophobic interactions on the helix–random coil transition. Since water is a poor solvent for poly-L -alanine, water-soluble copolymers of the type (D , L -lysine)m–(L alanine)n-(D , L -lysine)m, having 10, 160, 450, and 1000 alanyl residues, respectively, in the central block, were synthezised. The optical rotatory dispersion of the samples was investigated in the range 190–500 mμ, and the rotation at 231 mμ was related to the α-helix content, θH, of the alanine section. In salt-free solutions, at neutral pH, the three large polymers show high θH values, which are greatly reduced when the temperature is increased from 5 to 80°C. No helicity was observed for the small (n = 10) polymer. By applying the Lifson-Roig theory, the following parameters were obtained for the transition of a residue from a coil to a helical state: ν = 0.012; ΔH = ?190 ± 40 cal./mole; ΔS = ?0.55 ± 0.12 e.u. Since ΔH and ΔS differ from the values expected for a process involving only the formation of a hydrogen bond, and in a manner predicted by theories for the influence of hydrophobic bonding on helix stability, it is concluded that a hydrophobic interaction is also involved. In the presence of salt (0.2M NaCl), or when the ε-amino groups of the lysyl residues are not protonated (pH = 12), the helical form of the two large polymers (n = 450 and n = 1000) is more stable than in water. Since the electrostatic repulsion between the lysine end blocks is greatly reduced under these conditions, the alanine helical sections fold back on themselves, and this conformation is stabilized by interchain hydrophobia bonds. This structure was predicted by the theory for the equilibrium between such interacting helices, non-interacting helices, and the random coil.  相似文献   

7.
H Sugiyama  H Noda 《Biopolymers》1970,9(4):459-469
The potentiometric titration of random copolymers of L -lysine and L -alanine containing 0–35% alanine was carried out. The standard free-energy change for the transition of coil to helix was calculated from the titration curve, and was treated by taking account of first-neighbor interactions. For uncharged lysine ΔG° = ?140 cal/mole, and for alanine ΔG° = ?50 cal/mole in 0.06M NaBr at 25°C, indicating that the alanine helix is thermodynamically less stable than the lysine helix. The randomness in co-polymerization was confirmed by trypsin treatment.  相似文献   

8.
Water-soluble, random copolymers containing L -glutamine and either N5-(3-hydroxypropyl)-L -glutamine or N5-(4-hydroxybutyl)-L -glutamine were synthesized, fractionated, and characterized. The thermally induced helix–coil transitions of these copolymers were studied in water. A short-range interaction theory was used to deduce the Zimm-Bragg parameters σ and s for the helix–coil transition in poly(L -glutamine) in water from an analysis of the melting curves of the copolymers in the manner described in earlier papers. The computed values of s indicate that L -glutamine is helix-indifferent at low temperature and a helix-destabilizing residue at high temperature in water. At all temperatures in the range of 0–70°C, the glutamine residue promotes helix–coil boundaries since the computed value of σ is large.  相似文献   

9.
The effect of the number of methylene groups in the side chains on the conformation of polypeptides is assessed for three poly(L -lysine) homologs with R = –(CH2)nNH2. Circular dichroism studies show a pH-induced helix–coil transition in 0.05 M KCl with midpoints at 9.6, 9.0, and 8.7 for n = 5, 6, and 7, respectively, as compared with 10.1 for (Lys)x (n = 4). Homologs with n = 6 and 7 could be partially helical even when the side groups are fully charged (with n = 7, the compound is highly aggregated above pH 9.1). Thus, the longer the number of methylene groups the more stable is the helical conformation of these homologs. Potentiometric titration of the n = 5 homolog gives a ΔG° of ?310 cal/mol (residue) for the uncharged coil-to-helix transition at 25°C. The corresponding ΔH° and ΔS° are ?1740 cal/mol (residue) and ?4.8 e.u./mol (residue). Unlike (Lys)x, the uncharged helix-to-β transition is slow and incomplete even after heating at 80°C for 1 hr. Addition of methanol enhances the helical formation in neutral solution with midpoints at 72, 52, and 27% methanol (v/v) for n = 5, 6, and 7, respectively [cf. 88% for (Lys)x]. Addition of sodium dodecyl sulfate induces a coil-to-helix transition for all three homologs in contrast with the β form of (Lys)x under similar conditions.  相似文献   

10.
Light-scattering studies were done to investigate the DNA collapse transition, a large and discontinuous reduction in the radius of gyration. Of particular concern was differentiating the compaction of a single DNA molecule from aggregation. Solutions of RK2 plasmid DNA (Mr = 37 × 106) or bacteriophage T7 DNA (Mr = 25 × 106) were titrated with the condensing reagents spermidine in aqueous solvent or magnesium ion in ethanol–water solvent. The transition was followed by the change in scattering at a single angle or by the change in the angular dependence of scattering. At concentrations below 1 μg/mL, only aggregation could be detected by observation at a single angle; therefore, to study the collapse transition, it was necessary to measure the angular dependence of scattering. The intensities measured between the angles 30° and 60° were fit to known scattering functions. At low concentrations of the condensing reagent, the data were consistent with the scattering function of a random coil. On the other hand, during the transition at higher reagent concentrations, the curve that fit the data required two components—the scattering function for a random coil with a large radius of gyration, plus that for a sphere with a radius about one-fifth of that of the coil. The fractional concentration of the sphere increased with increasing condensing-reagent concentration. This two-component behavior is in apparent contrast to the situation with a more flexible polymer such as polystyrene, in accord with theoretical predictions. At still higher reagent concentrations, aggregation was apparent. Condensation to a collapsed state was reversible without hysteresis, while dissolution of the aggregated state nearly always occurred with hysteresis. Qualitative agreement between the observed DNA collapse transition and the theoretical phase diagram presented in the preceding paper was found, although the light-scattering results did not show quantitative agreement with the simple theoretical model.  相似文献   

11.
A polypeptide having the repealing sequence (Tyr-Ala-Glu)n was synthesized by the polymerization of the N-hydroxysuccinimide ester of O-benzyl-L -tyrosyl-L -alanyl-γ-benzyl-L -glutamate, followed by the removal of the benzyl groups by means of hydrogen bromide. The main fraction obtained on gel filtration had an average molecular weight of over 60, 000, corresponding to over 500 amino acid residues per polypcptide chain. The polymer is soluble in water above pH 5.5, and precipitates on lowering the pH. The x-ray powder photographs show features of an α-helical structure. The dependence of the ultraviolet absorption spectrum, the optical rotatory dispersion, and the fluorescence of poly(Tyr-Ala-Glu) on pH, in salt-free as well as in salt-containing aqueous solutions, was compared with the corresponding properties of a copolymer containing equimolar proportions of tyrosine, alanine, and glutamic acid in a random sequence. From these measurements it was concluded that poly(Tyr-Ala-Glu ) has a helical con formation at low pH and a random coil conformation at high pH, the transition taking place at pH 6 in the absence of salt and pH II in the presence of salt. Thus, in the range pH 7 to l0. random coil-to-helix transition can be achieved by merely increasing the ionic strength. A model is proposed for the structure of the helical poly peptide which accounts for the Stability of the helical conformation by assuming hydrogen bonding between the carboxylate group of the ith glutamic acid residue and the hydroxyl group of the (i + 4 )th tyrosine residue. The complex ORD of helical poly(Tyr-Ala-Glu) is explained as being due to a superposition of the ORD of an α-helix and that of a regular array of phenolic ehroniopholes originating from the immobilization of the aromatic rings in the specific structure of the polymer.  相似文献   

12.
A theoretical study of effects of excluded volume intermolecular interactions on the sharpness of helix–coil transitions in solutions of polyamino acids or simple proteins indicates that the transition width may vary appreciably as a function of polymer concentration. The analysis is based on a second virial approximation for the excess free energy of mixing of a solution of polymers of varying degrees of helicity. The virial coefficients involved are roughly estimated on the basis of gross polymer geometry. For large N (degree of polymerization) the transition is found, typically to sharpen with increasing concentration, becoming second order and then first order at sufficiently high concentrations. The critical polymer concentration is found to be roughly of the order N?1.2 ??0?1 for an “all or none” model and of order σ1/2 N?0.2 ??0?1 for a model with continuously variable degree of helicity (??0 is the volume of a single helical molecule and σ1/2 the normalized statistical weight of a helix–coil interface). In the second case for N ~ 103 and σ ~ 10?2–10?4, the predicted critical concentration is in the range 10?1–10?3 g/cm.3 Comparison is made with experiments on solutions of poly(γ-benzyl-L glutamate).  相似文献   

13.
G Govil  I C Smith 《Biopolymers》1973,12(11):2589-2598
The temperature-dependent conformations of poly(U) in 0.5M CsC1 have been studied by carbon-13 nuclear magnetic resonance. The transition from random coil to an ordered structure results in broadening of lines in the 13C spectra, due to intramolecular 1H–13C dipolar interactions and restricted motions in the ordered state. Changes in the chemical shifts suggest that the bases are interacting below the transition temperature. The random coil form shows conformation preferences for internal rotation about C4′–C5′, C5′–O5′, and C3′–O 3′ bonds. The statistical randomness of the coil arises mainly because of flexibility about O–P bonds. The results are analyzed in conjunction with theoretical calculations and light-scattering data.  相似文献   

14.
Hajime Noguchi 《Biopolymers》1966,4(10):1105-1113
Water-insoluble films of poly-L -lysine, crosslinked with formaldehyde, were suspended in aqueous media and their relative lengths measured as a function of pH. A sharp transition of the polymer was observed in the pH range which corresponded with that observed in polylysine solutions by optical rotation or dilatometry. In NaBr and NaCl solutions the coiled form of the polylysine film shrinks with increasing salt concentration, but in NaHCO3 solution the extent of the contraction is larger, and the coil–helix transition of polylysine occurs at lower pH when NaHCO3 is added to the medium. If one assumes the formation of amino carbamate in this case, this phenomenon can be well explained. Urea does break up the hydrogen bonds in helical polylysine film, but not completely. This result is interesting compared with that obtained for poly(L -glutamic acid). After the coil–helix transition region was found by film experiments, the volume change associated with the coil-to-helix transition was measured and found to be about 1–l.5 ml. per amino residue after taking electrostatic interaction into consideration. This value is nearly same as that obtained for poly(L -glutamic acid). By contrast, the value for poly-γ-benzyl-L -glutamate was reported to be ?0.077 ml./mole of repeating unit. So it is still necessary to determine the magnitude and direction of the volume change for various kinds of polypeptides.  相似文献   

15.
Potentiometric titrations and some complementary optical rotation data are presented for solutions of poly(L - glutamic acid) (PGA) in several H2O–ethanol mixtures. The data allow the determination of the intrinsic pK (pK0), slope of the apparent. pK (pKapp), versus degree of ionization curves and of the enthalpy of ionization as a function of ethanol concentration. The variation of the degree of ionization at which the helix–coil transformation occurs with ethanol and temperature is also determined. Finally free energy, enthalpy, and intropy changes associated with the helix–coil transformation for the uncharged conformers are determined from the titration curves. The effect of the ethanol is to increase the stability of the helical conformation of PGA for both the charged and the uncharged forms of the polymer. The stabilization of the uncharged helix is essentially an entropic effect.  相似文献   

16.
Hiroshi Maeda 《Biopolymers》1972,11(1):95-104
Counterion activity of poly-S-carboxyethyl-L-cysteine in salt-free solutions neutralized to various degrees with sodium hydroxide was determined either directly from the e.m.f measurements of concentration cells formed across a Na–glass electrode, or from the potentiometric titrations at different sodium chloride concentrations assuming the additivity rule. From e.m.f. measurements, the activity coefficient of counterions was confirmed to display the β-structure random coil transition of the polymer. For random coil state, both methods gave identical results. Observed values of the activity coefficient was generally smaller than those for other randomly coiled polypeptides. The activity coefficient was found to decrease with the increase of the polymer concentration. The activity coefficient of counterions for β-structure was extremely small as compared with that for random coil at the same degree of neutralization. The activity coefficient obtained from titrations was almost independent of degree of neutralization and increased with the increase of the polymer concentration.  相似文献   

17.
Poly(Lys-Tyr-Tyr-Lys) was synthesized by polycondensation of the tetrapeptide unit using paranitrophenyl esters. The conformation of poly (Lys-Tyr-Tyr-Lys) is very dependent on its environment. CD spectra in bulk are difficult to interpret owing to the contribution of Tyr residues, but from ir spectra it seems that poly(Lys-Tyr-Tyr-Lys) adopts preferentially an unordered conformation in water. Addition of salts induces a partial transition to a β structure. The behavior is different at interfaces. When poly(Lys-Tyr-Tyr-Lys) is spread as a film on a water subphase, the shape of the compression isotherm curves is compatible with a stacking of two β-sheets. On a KCl subphase, the polymer film is more expanded and more compressible, and the isotherm curve resembles that of a polymer in a random conformation. The analysis by CD and ir spectroscopy of transferred monolayers using the Langmuir–Blodgett technique allowed us to confirm and make these data more precise: on a water subphase the spectra are those of an antiparallel β structure. At the interface of a saline solution the spectra are compatible with a mixture of random coil (largely) and a small content of β structures. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The helix–coil transition for poly(β-benzyl-L -aspartate) [poly(Asp[OBzl])] in solvent mixtures of trifluoroacetic acid/deuterated chloroform (F3AcOH/CDCl3) was studied by means of proton and carbon-13 nmr. Conformational fixation of the side chain occurs before the coil–helix transition of the backbone, when neighboring phenyl rings face each other. Another type of conformational fixation occurs in the side chain after the coil–helix transition of the backbone. These conformational changes of the side chain are due to the changes of the strength of the interaction between the side-chain ester group and the F3AcOH molecule. In the absence of F3AcOH (coil-forming solvent), the polymer has a rather rigid structure in which the side chain may wrap around the backbone. These conformational changes of the polymer are closely related to the changes of the interaction between the polymer and F3AcOH molecules.  相似文献   

19.
C R Snell  G D Fasman 《Biopolymers》1972,11(8):1723-1744
Conformational aspects of a series of copolymers of L -Leucine and L -leucine [poly-(LysxLeuy)] containing 0 to 0.41 mole fraction L -leucine have been studied by circular dichroism (CD) and potentiometric titration in 0.05M KF solution. CD studies on the α-helical conformation showed a dependence of the magnitude of the CD ellipticity band at 222 nm on copolymer composition; the [θ]222 decreasing with higher leucine contents. This was interpreted as the result of an increase of the hydrophobicity of the environment of the amide group due to the presence of the leucyl residues. Values of the Zimm-Rice parameter, σ, for the copolymers were obtained from the potentiometric titrations and used to fit theoretical curves to the experimental data. Using the variation of σ with polymer composition, a value of σ for the leucyl residue was estimated to be 6.3 × 10?2, assuming independence of σ on the amino acid sequence in the copolymer. The free energy change for the conversion of one mole residue from uncharged helix to uncharged coil, ΔGhc°, was also obtained from the titration data for each copolymer up to a leucine mole fraction of 0.16; a value of 385 cal mole?1 was estimated for ΔGhc° for a leucyl residue. These values for σ and ΔGhc° are compared with other values in the literature for various amino acid residues obtained from titration and melting curve data.  相似文献   

20.
Y C Fu  H V Wart  H A Scheraga 《Biopolymers》1976,15(9):1795-1813
The enthalpy change associated with the isothermal pH-induced uncharged coil-to-helix transition ΔHh° in poly(L -ornithine) in 0.1 N KCl has been determnined calorimetrically to be ?1530 ± 210 and ?1270 ± 530 cal/mol at 10° and 25°C, respectively. Titration data provided information about the state of charge of the polymer in the calorimetric experiments, and optical rotatory dispersion data about its conformation. In order to compute ΔHh°, the observed calorimetric heat was corrected for the heat of breaking the sample cell, the heat of dilution of HCl, the heat of neutralization of the OH? ion, and the heat of ionization of the δ-amino group in the random coil. The latter was obtained from similar calorimetric measurements on poly(D ,L -ornithine). Since it was discovered that poly(L -ornithine) undergoes chain cleavage at high pH, the calorimetric measurements were carried out under conditions where no degradation occurred. From the thermally induced uncharged helix–coil transition curve for poly(L -ornithine) at pH 11.68 in 0.1 N KCl in the 0°–40°C region, the transition temperature Ttr and the quantity (?θh/?T)Ttr have been obtained. From these values, together with the measured values of ΔHh°, the changes in the standard free energy ΔGh° and entropy ΔGh°, associated with the uncharged coil-to-helix transition at 10°C have been calculated to be ?33 cal/mol and ?5.3 cal/mol deg, respectively. The value of the Zimm–Bragg helix–coil stability constant σ has been calculated to be 1.4 × 10?2 and the value of s calculated to be 1.06 at 10°C, and between 0.60 and 0.92 at 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号