首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human chorionic gonadotropin (hCG) was deglycosylated with anhydrous HF and compared with native hCG for binding and biological activity. The deglycosylated hormone (DG-hCG) had the same affinity as hCG for gonadotropin receptors in murine Leydig tumor cells (MLTC-1) but was less than 1% as potent as hCG in stimulating cyclic AMP production in these cells. Exposure of MLTC-1 cells for 30 min to hCG caused a desensitization of hCG-stimulated adenylate cyclase activity, whereas DG-hCG did not induce desensitization even after 4 h. hCG induced down-regulation of hCG receptors; by 4 h, 40% of the receptors had disappeared, whereas there was no receptor loss in cells exposed to DG-hCG for the same time. By 6 h, receptor down-regulation began to occur in the DG-hCG-treated cells and could be mimicked by exposing the cells to dibutyryl cyclic AMP or cholera toxin. Thus, the small increase in cyclic AMP generated by DG-hCG appears to result in some loss of receptors. Cells were incubated with iodinated hCG or DG-hCG for 30 min, washed, and incubated in fresh medium. Both bound ligands were degraded as measured by disappearance of cell-associated radioactivity and appearance of trichloroacetic acid-soluble label in the medium. The half-lives were 3 and 6 h for hCG and DG-hCG, respectively. Our results indicate that DG-hCG in contrast to hCG does not cause either rapid desensitization of hCG-stimulated adenylated cyclase or rapid down-regulation of hCG receptors. Therefore, receptor occupancy alone is insufficient to induce these phenomena.  相似文献   

2.
The murine Leydig tumor cell line, MLTC-1, has a gonadotropin-responsive adenylate cyclase system. Binding of human chorionic gonadotropin (hCG) stimulates the accumulation of cyclic AMP in these cells. Chemically deglycosylated hCG (DG-hCG) is an antagonist that binds with high affinity to the gonadotropin receptor, but fails to stimulate adenylate cyclase. This antagonism can be reversed if the binding of DG-hCG is followed by treatment of the DG-hCG-receptor complex with antibodies against hCG. Polyclonal antibodies against DG-hCG were raised in rabbits. These antibodies were strongly cross-reactive with hCG, bound to both the alpha- and beta-subunits of hCG and DG-hCG, and reversed the antagonism of DG-hCG. The antiserum was divided into two fractions by affinity chromatography on hCG-Sepharose. The fraction that was not retained reacted only with DG-hCG (DG-hCG antibodies) and, on Western blots, bound to both the alpha- and beta-subunits of DG-hCG. DG-hCG antibodies did not reverse the antagonism of DG-hCG. However, using 125I-protein A, we were able to detect binding of these antibodies to the cell surface DG-hCG-receptor complex. The fraction of antibodies retained by the affinity column reacted with both DG-hCG and hCG (DG-hCG/hCG antibodies). On Western blots, DG-hCG/hCG antibodies bound to the beta-subunit, but only weakly to the alpha-subunit of both hCG and DG-hCG. These antibodies also bound to the cell surface DG-hCG-receptor complex. In addition, DG-hCG/hCG antibodies were able reverse the antagonism of DG-hCG. Reversal of DG-hCG antagonism by the whole antiserum was blocked by the beta- but not the alpha-subunit of hCG. Polyclonal antiserum against the beta- but not the alpha-subunit of hCG reversed the antagonism of DG-hCG. From these results, we conclude that antibody binding to specific determinants common to both native and deglycosylated beta-subunit reverses the antagonism of DG-hCG. In addition, antibodies directed against unique determinants on the deglycosylated beta-subunit are not capable of reversing the antagonism of DG-hCG.  相似文献   

3.
Utilizing a clonal cell line of mouse testicular Leydig cells (MA-10 cells) the complete steroidogenic and other hormonal properties of chemically deglycosylated ovine lutropin (DG-LH) and human choriogonadotropin (DG-hCG) were evaluated. In these cells, with the LH receptor-steroidogenic mechanism tightly coupled and in which there are few, if any, spare receptors, both DG-LH and DG-hCG failed to elicit progesterone production, unlike fully glycosylated native LH and hCG. The receptor-binding activity of DG-LH and DG-hCG was 2-3 times that of LH and hCG in competition experiments with radiolabelled hormones. The typical phenomenon of rounding of MA-10 cells induced by LH and hCG was absent when cells were incubated with DG-LH or DG-hCG. This could be directly attributable to their failure to produce cyclic AMP as second messenger. DG-LH and DG-hCG inhibited cell shape changes and steroidogenesis caused by LH and hCG. The deglycosylated hormones were potent antagonists of the action of glycosylated hormones. Delaying DG-hCG (antagonist) addition for up to 1 h after initiation of hCG action was also very effective in preventing further activation of steroidogenesis. Similar effects were produced by addition of affinity-purified anti-hCG antibodies. In affinity cross-linking experiments, both hCG and DG-hCG bound to the same 90 kDa receptor. Studies with MA-10 cells thus provide unequivocal evidence that the presence of antennary sugars in LH and hCG (and perhaps in other similar hormones such as follicle-stimulating hormone and thyroid-stimulating hormone), is essential for signal transduction. Differences observed in the literature in other cellular systems may be attributed to differences in hormone-receptor-effector coupling.  相似文献   

4.
The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (Gs). The binding of human choriogonadotropin (hCG) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H2O and D2O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (vc), sedimentation coefficient (S20,w), and molecular weight (Mr) of the detergent-solubilized hormone-receptor complex (hCG-GR). [125I]hCG was bound to MLTC-1 cells under conditions that allow (37 degrees C) or prevent (0 degree C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a Mr of 213,000 (a = 6.2; vc = 0.76; S20,w = 7.3), whereas desensitized hCG-GR had a Mr of 158,000 (a = 6.1; Vc = 0.71; S20,w = 6.6). Deglycosylated hCG (DG-hCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. [125I]DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR (Mr 213,000; a = 5.8; Vc = 0.77; S20;w = 7.6) were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or Gs with GR in Triton X-100 solubilized preparations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In order to determine the significance of carbohydrate residues of human chorionic gonadotropin (hCG) in receptor interaction and signal transduction leading to steroidogenesis, the effect of deglycosylated hCG (DG-hCG) was studied in vitro with two different hCG-responsive purified testicular interstitial cell fractions. Fraction I light cells, previously found to bind 125I-labeled hCG with high affinity without producing testosterone, also bound 125I-labeled DG-hCG with high affinity (Kd 7.2.10(-10) M) without stimulating testosterone production. Fraction IV heavier cells, which produced testosterone in response to hCG without detectable high-affinity hCG-binding sites, neither bound DG-hCG nor sufficiently produced cAMP and testosterone in response. With the addition of intact hCG, DG-hCG inhibited cAMP levels, although not sufficiently to inhibit testosterone production. This observation was contrary to previous studies in which DG-hCG was shown to be an antagonist to hCG action. We conclude that: (a) DG-hCG retains its binding activity in light cells and this high-affinity binding is unrelated to steroidogenesis; (b) DG-hCG does not bind to heavier cells with high affinity and loses its biological activity as result of deglycosylation; (c) DG-hCG actions in this study strengthen the concept of two different hCG-responsive cells in the rat interstitium which, if not separated, will yield misleading data supporting the coexistence of hCG high-affinity binding and biological response in the same cell; and (d) DG-hCG partially antagonizes the activation of adenylate cyclase but does not block testosterone production, thus questioning the usefulness of this analogue in antagonizing the action of native hCG in rat testis.  相似文献   

6.
Exposure of aqueous solutions of native human choriogonadotropin (hCG), asialo-hCG (A-hCG), and chemically deglycosylated hCG (DG-hCG) to heat treatment revealed significant differences in their stability. Solutions of hCG and A-hCG were rapidly inactivated above 50 degrees C. On the other hand, solutions of DG-hCG were comparatively more stable under similar conditions as shown by the retention of significant receptor binding, immunological, and hormonal antagonistic activities. Heated solutions (100 degrees C) of hCG and A-hCG quickly lost their ability to enhance the fluorescence of the probe 1-anilino-8-naphthalenesulfonate (1,8-ANS) indicating dissociation into subunits. DG-hCG solutions were more stable in this respect suggesting significant preservation of conformational features required for the interaction with 1,8-ANS. Solutions of hCG and A-hCG which had been thermally denatured (100 degrees C, 10 min) required almost 48 h at 37 degrees C to regain complete ANS binding ability as well as receptor binding activity. Under the same conditions, heated solutions of DG-hCG completely regained these abilities in less than 2 h. A similar pattern was observed with acid (pH 2.0)-dissociated hCG, A-hCG, and DG-hCG. While heated solutions of hCG had no effect on the action of native hCG in vitro, heated DG-hCG solutions still retained their ability to antagonize the cyclic AMP accumulation or steroidogenesis induced by native hCG in rat interstitial cells. Thus, removal of carbohydrate residues (approximately 75% loss) from hCG renders the hormone more resistant to thermal denaturation.  相似文献   

7.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effect of muscarinic agonist on adenylate cyclase was investigated in neonatal islet cells and in a clonal pituitary cell line (GH4C1) following labelling of the intracellular ATP pool with [2,8 3H]adenine. In islet cells carbamylcholine was without effect on basal or glucagon-stimulated adenylate cyclase activity, measured as 3H cyclic AMP production, but inhibited 3H cyclic AMP production in the clonal pituitary cells. The involvement of the inhibitory guanine nucleotide binding protein of adenylate cyclase (Ni) was investigated by the use of the Bordetella pertussis exotoxin, islet activating protein (IAP). Pre-treatment of islet cells with IAP was without effect on adenylate cyclase following carbamylcholine but in the clonal pituitary line abolished the inhibition of 3H cyclic AMP production. It is concluded that in the islet cell, in contrast to the clonal pituitary cell, muscarinic receptors are not effectively coupled through Ni to inhibit adenylate cyclase.  相似文献   

9.
Summary The lag period for activation of adenylate cyclase by choleragen was shorter in mouse neuroblastoma N18 cells than in rat glial C6 cells. N18 cells have 500-fold more toxin receptors than C6 cells. Treatment of C6 cells with ganglioside GM1 increased the number of toxin receptors and decreased the lag phase. Choleragen concentration also effected the lag phase, which increased as the toxin concentration and the amount of toxin bound decreased. The concentration, however, required for half-maximal activation of adenylate cyclase depended on the exposure time; at 1.5, 24, and 48 hr, the values were 200, 1.1., and 0.35pm, respectively. Under the latter conditions, each cell was exposed to 84 molecules of toxin.The length of the lag period was temperature-dependent. When exposed to choleragen at 37, 24, and 20 °C, C6 cells began to accumulate cyclic AMP after 50, 90, and 180 min, respectively. In GM1-treated cells, the corresponding times were 35, 60, and 120 min. Cells treated with toxin at 15 °C for up to 22 hr did not accumulate cAMP, whereas above this temperature they did. Antiserum to choleragen, when added prior to choleragen, completely blocked the activation of adenylate cyclase. When added after the toxin, the antitoxin lost its inhibitory capability in a time and temperature-dependent manner. Cells, however, could be preincubated with toxin at 15 °C, and the antitoxin was completely effective when added before the cells were warmed up. Finally, cells exposed to choleragen for >10 min at 37 °C accumulated cyclic AMP when shifted to 15 °C. Under optimum conditions at 37°C, the minimum lag period for adenylate cyclase activation in these cells was 10 min. These findings suggest that the lag period for cholerage action represents a temperature-dependent transmembrane event, during which the toxin (or its active component) gains access to adenylate cyclase.Abbreviations used: ganglioside nomenclature according to Svennerholm [32] (see Table 1 for structures) cAMP adenosine 35-monophosphate - MIX 3-isobutyl-1-methylxanthine - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PBS phosphate-buffered saline (pH 7.4)  相似文献   

10.
The effects of dopamine and octopamine on adenylate cyclase activity were studied on the head homogenate of adult Culex pipiens mosquitoes in vitro. Both dopamine and octopamine were shown to increase the cyclic AMP content in the homogenate. The antagonist haloperidol blocked the production of cyclic AMP induced from dopamine but had no effect on the production of cyclic AMP induced by octopamine at the concentrations tested. The opiate agonist etorphine was ineffective at reducing cyclic AMP levels induced by either dopamine or octopamine at the concentrations tested.  相似文献   

11.
Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.  相似文献   

12.
Catecholamines substituted to agarose were synthesized in various ways. Norepinephrine and isoproterenol were linked to p-aminobenzamidohexyl agarose by an azo linkage to the catechol ring. Norepinephrine was also couple to hexyl agaros via the amino group, forming an amino, guanidino or amido bond. Biological activity of the immobilized catecholamines was determined by assessing their abilities to interact with adenylate cyclase in several membrane preparations and intact preparations of erythrocytes. In dog heart membranes, stimulation of adenylate cyclase by the catecholamine-gels could be accounted for by leached hormone which had been released from the gels. In frog erythrocyte membranes, leaching was minimal and no significant stimulation of adenylate cyclase was observed. Agarose-immobilized catecholamines, however, competitively inhibited isoproterenol stimulation of adenylate cyclase in these erythrocyte membranes indicating that catecholamines which are bound to agarose interact with the beta-adrenergic receptors as antagonists rather than agonists. When tested on intact frog erythrocytes, agarose immobilzed catecholamines did not increase the intracellular levels of cyclic AMP, although isoproterenol caused as 8-10 fold rise in these levels. Similarly, when tested for antagonist activity in the intact cells the agarose-catecholamines failed to inhibit the stimulation of cyclic AMP caused by isoproterenol. The difference observed in the beta-adrenergic antagonist activity of the agarose-bound catecholamines in membrane preparations and intact cells can be attributed to steric factors which could have prevented the access of the bead-bound ligands with the surface of the cell or to the possibility that receptors might be buried in the membrane matrix.  相似文献   

13.
The increase in hormone-stimulated cyclic AMP accumulation observed in a variety of intact cells after chronic pretreatment with drugs that inhibit adenylate cyclase activity has been attributed to an increase in adenylate cyclase activity following withdrawal of the inhibitory drug. In NG 108-15 mouse neuroblastoma X rat glioma hybrid cells (NG cells) chronically treated with the muscarinic cholinergic agonist carbachol, we have found a significant decrease in the apparent degradation rate constant for cyclic AMP, in addition to an increase in the prostaglandin E1 (PGE1)-stimulated cyclic AMP synthesis rate in intact cells. In carbachol-pretreated NG cells that were stimulated with a maximally effective dose of PGE1, and that accumulated steady-state cyclic AMP concentrations fourfold or more higher than in control cells, the apparent rate constant for degradation was about 53% lower than the value for control cells. In carbachol-pretreated cells stimulated with a submaximal dose of PGE1 to yield a steady-state cyclic AMP concentration comparable to control cells, the apparent rate constant was 31% lower than the value for control cells. In S49 mouse lymphoma cells (S49 cells) chronically treated with an analog of the inhibitory agonist somatostatin, the first-order rate constant for cyclic AMP degradation in intact cells following isoproterenol stimulation was 29% lower than the value for control cells. Despite these changes in the kinetics of cyclic AMP degradation in intact NG cells and S49 cells, there was either no change or a minimal change (less than 10%) in phosphodiesterase activities assayed in extracts of cells chronically exposed to inhibitory drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cell cycle changes in the adenylate cyclase of C6 glioma cells   总被引:1,自引:1,他引:0       下载免费PDF全文
The adenylate cyclase of C6 glioma cell cultures was characterized for sensitivity to the beta-adrenergic agonist isoproterenol, as well as fluoride, and GTP as a function of the cell cycle. The mitotic phase of the cell cycle was emphasized because both the basal cellular cyclic AMP level and the intact C6 cell's capacity to accumulate cyclic AMP in response to isoproterenol decreased during mitosis. Basal and stimulated adenylate cyclase activities in mitotic cells were decreased relative to the enzyme activities in the G1, S, and G2 phases of the cell cycle. Analysis of the beta-adrenergic receptor using the radioligand(-)[3H]dihydroalprenolol showed that neither ligand affinity nor receptor density changed during the cell cycle, indicating that the reduced adenylate cyclase activity of the mitotic C6 cell was not caused by alterations in this hormone receptor. The reduction in the mitotic cell's basal adenylate cyclase activity was more prominent than the decrease in isoproterenol-, fluoride, or GTP-stimulated activities suggesting that the effectiveness of these enzymes activators (i.e., the efficiency of the coupling mechanism) was not attenuated during mitosis. These studies indicate that the intrinsic catalytic capacity (not the beta-adrenergic receptor or the coupling mechanism) of the C6 adenylate cyclase complex is reduced during mitosis and contributes to the mitotic cell's inability to accumulate and maintain the cyclic AMP concentration at the interphase level.  相似文献   

15.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

16.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of forskolin alone or in combination with vasoactive intestinal peptide (VIP) and the beta-adrenergic agonist isoproterenol on cyclic AMP accumulation in epithelial cells of rat ventral prostate were examined. Forskolin stimulated cyclic AMP in a time- and temperature-dependent manner. At 15 degrees C, forskolin behaved as a highly potent and relatively efficient stimulatory agent. The combination of forskolin with maximal doses of VIP or isoproterenol were purely additive. These results suggest that forskolin might act directly upon the catalytic subunit of adenylate cyclase in this particular class of cells.  相似文献   

18.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

20.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号