首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method for correlating polymerase activity with a particular polypeptide band in an SDS-polyacrylamide gel which does not require renaturation of the SDS-denatured enzyme. The method involves the following steps: (i) transfer of proteins from an SDS-polyacrylamide gel onto nitrocellulose; (ii) incubation with excess antiserum raised against a partially purified polymerase preparation to link one Fab site of an antibody molecule to the denatured enzyme on the nitrocellulose; (iii) binding of native polymerase to the other Fab site of the antibody molecule in the immune complex to generate a specific polymerase 'sandwich'; (iv) assaying of the nitrocellulose filter for antibody-linked native polymerase activity using an appropriate template and a radioactive substrate followed by treatment with trichloroacetic acid to precipitate in situ the radioactive product. The essential feature of this method is that the use of both non-specific anti-polymerase serum and a partially purified enzyme preparation is sufficient to allow identification of a specific protein following SDS-polyacrylamide gel electrophoresis. This antibody-linked polymerase assay has been developed to identify a 130,000-dalton RNA-dependent RNA polymerase from cowpea leaves. Possible applications of this type of assay as a tool for identifying a wide variety of proteins are discussed.  相似文献   

2.
The immunochemical reaction of monoclonal antibodies directed against native membrane proteins was investigated after their separation in sodium dodecyl sulfate polyacrylamide gels and electrotransfer to nitrocellulose. Nonspecific binding of antibodies to membrane proteins, which was increased by beta-mercaptoethanol treatment or heat denaturation of the antibodies, could be significantly reduced if 1 M D-glucose plus 10% (v/v) glycerol was added during the incubation with the antibodies. It was found that specific antibody binding was drastically reduced by SDS treatment of the membrane proteins. During the electrotransfer to nitrocellulose and the simultaneous removal of SDS, some increase in antibody binding was observed. Considerable renaturation of antigenic sites in the blotted proteins could be induced if the nitrocellulose blots were incubated for 16 h at 37 degrees C in phosphate-buffered saline. With the introduction of both modifications, the renaturation step, and the addition of D-glucose and glycerol to reduce nonspecific antibody binding, the immunoblot technique may be successfully applied to detect conformational antibodies against membrane proteins.  相似文献   

3.
Screening lambda cDNA libraries from rat liver with antibody to native rat liver sulfite oxidase (RLSO) showed cross-reaction with two proteins that belong to the same gene family: serum albumin and vitamin D-binding protein. Antibodies raised against native RLSO or sodium dodecyl sulfate-denatured protein cross-reacted with these proteins by Western blot analysis. The relative effectiveness of RLSO antibody binding was estimated to be 1/5 for rat serum albumin and 1/10 for rat vitamin D-binding protein. This result was not caused by contaminating proteins in the RLSO used for immunization as the RLSO preparation did not react with rat serum albumin antibody. RLSO antibodies, selected for their ability to bind rat serum albumin immobilized on nitrocellulose, recognized both rat serum albumin and RLSO. RLSO antibody, with albumin-reactive antibody removed, still recognized vitamin D-binding protein, suggesting that multiple determinants specific to each protein are involved in the cross-reaction. Comparison of RLSO antibody binding to the rat and human proteins indicated that the determinants were species-specific. cDNA clones identified by screening cDNA libraries with RLSO antibody demonstrated that these determinants reside in the C-terminal domain of these proteins. These results suggest that these proteins contain some common immunological features and may be evolutionarily related.  相似文献   

4.
(1) Human antibodies to cardiolipin, phosphatidic acid and phosphatidylserine were assessed by binding to nitrocellulose paper and subsequent reaction with an enzyme-linked or radioactively labelled second antibody to human IgG. (2) The addition of cholesterol to constant amounts of cardiolipin impregnated in the nitrocellulose paper resulted in a profound fall in antibody binding beginning at a 0.5 to 1 molar ratio of cholesterol to cardiolipin and stabilizing at about 15% of the original level. (3) Antibody binding to phosphatidic acid and phosphatidylserine also showed extensive cholesterol-induced inhibition beginning at a slightly lower molar ratio of cholesterol to phospholipid. (4) The structural array of neither the cardiolipin alone impregnated in nitrocellulose nor the phospholipid together with cholesterol is known. It is possible that the specific cardiolipin phase structure required for human antibody recognition was disrupted by cholesterol.  相似文献   

5.
6.
Monoclonal antibodies against chick embryonic beta-galactoside-binding lectin were obtained. One of the monoclonal antibodies was ineffective in Western blotting and seemed to be unable to bind the SDS-denatured lectin. When the native lectin was dotted on a nitrocellulose filter and subjected to denaturation by treatment with SDS, urea or heat, binding of this antibody no longer occurred, though other monoclonal antibodies bound normally. This antibody seems to have been raised against an epitope which is destroyed upon denaturation.  相似文献   

7.
Increasing evidence has supported the concept that many of the enzymes and factors involved in the replication of mammalian DNA function together as a multiprotein complex. We have previously reported on the partial purification of a multiprotein form of DNA polymerase from human HeLa cells shown to be fully competent to support origin-specific large T-antigen-dependent simian virus 40 (SV40) DNA replication in vitro. In an attempt to more definitively identify the complex or complexes responsible for DNA replication in vitro, partially purified human HeLa cell protein preparations competent to replicate DNA in vitro were subjected to native polyacrylamide gel electrophoresis and electrophoretically transferred to nitrocellulose. The Native Western blots were probed with a panel of antibodies directed against proteins believed to be required for DNA replication in vitro. Apparent complexes of 620 kDa and 500 kDa were identified by monoclonal antibodies directed against DNA polymerase α and DNA polymerase δ, respectively. To detect epitopes possibly unexposed within the native multiprotein complexes, blots were also analyzed following denaturation in situ following treatment with detergent and reducing agent. The epitope or access to the epitope recognized by the monoclonal antibody against DNA polymerase α was destroyed by exposure of the blots to denaturing conditions. In contrast, an epitope present on a very large complex of approximately 1000 kDa was recognized by a monoclonal antibody against proliferating cell nuclear antigen only following treatment of the native immunoblots with denaturing agents. Identification of these complexes will allow their further purification, characterization, and elucidation of their role in the replication of DNA. © 1996 Wiley-Liss, Inc.  相似文献   

8.
A rapid method for the direct conjugation of affinity-purified antibodies with fluorescein (termed DCAPA) is described. This procedure involves the immobilization of antibodies as antigen-antibody complexes on nitrocellulose blots, and subsequently the bound antibodies are reacted with fluorescein isothiocyanate. An enriched sample of smooth muscle tropomysin transferred to nitrocellulose paper by the Western blotting procedure has been used as the affinity medium for purification of specific tropomyosin antibody from whole rabbit antiserum. Direct conjugation of the antibody with fluorescein was carried out following the binding of antibody to antigen. Direct conjugation and affinity purification of antibodies directed against tropomyosin was accomplished in 2-3 d using an enriched tropomyosin sample and whole antiserum directed against tropomyosin. The immunofluorescence images obtained with this procedure exhibit distinct advantages with regard to background fluorescence and overall specificity of antibody binding. The usefulness of this direct conjugation method in various experimental protocols is discussed.  相似文献   

9.
Anti-phospholipid antibodies from sera of subjects with documented syphilis were measured as a result of their individual interactions with cardiolipin, phosphatidylserine and phosphatidic acid, each impregnated in nitrocellulose paper from chloroform solution, followed by reaction with a labelled second antibody. Binding curves generated by increasing the cardiolipin concentration over a standard area of nitrocellulose paper showed saturation. The presence of Ca2+ or Mg2+ during the antibody binding step resulted in a complex pattern of binding as a function of the cation concentration. When the extent of binding was normalized to percent of maximum bound, virtually super-impossible patterns were seen with different sera. These patterns were distinctive for both the phospholipid and the cation. The speculation is presented, albeit without any direct evidence, that the extent of antibody binding is sensitive to a variety of intermediate phospholipid phase structures which may be initiated by the presence of the specific divalent cation at a particular concentration.  相似文献   

10.
11.
A murine IgA monoclonal antibody (MoAb) was produced against the widely used glucose/mannose-specific two-chain mitogen from Lens culinaris (lentil) belonging to the Vicieae tribe of the Leguminosae family. The MoAb designated, 98, F-10, was found to be specific for lentil lectin when tested in dot blotting against 22 different native lectins. The antigenic specificity was also tested against subunits of 13 completely sequenced legume lectins separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electrotransferred to nitrocellulose filters. The MoAb showed a strong reaction only against the lentil heavy subunit. Comparison of the amino-acid sequences revealed 13 amino-acid residues which might be involved in the epitope reactive with this antibody. The MoAb did not react with synthetic peptides from the heavy subunit of lentil.  相似文献   

12.
13.
A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 X 10(-8) to 1 X 10(-6) M. Other vitamin K-dependent proteins including Factor IX and protein S did not inhibit or inhibited only at the highest concentration binding of radiolabeled protein C to the immobilized antibody. Chemical treatment of prothrombin with a variety of agents including denaturation by sodium dodecyl sulfate, reduction with mercaptoethanol followed by carboxymethylation with iodoacetic acid, citraconylation of lysine residues, removal of metal ion with EDTA, or heat decarboxylation did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. Chymotrypsin digestion of prothrombin and isolation on QAE-Sephadex of the peptide representing amino-terminal residues 1-44 of prothrombin further localized the antigenic site recognized by the monoclonal antibody to the highly conserved gamma-carboxyglutamic acid-containing domain. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Antibody H-11 bound specifically to synthetic peptides corresponding to residues 1-12 of Factor VII and 1-22 of protein C. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. The glutamic acid residues in this peptide segment are the first 2 gamma-carboxyglutamic acid residues near the amino-terminal end in the native proteins. Increasing concentrations of Ca2+, Mg2+, or Mn2+ partially inhibited binding of 125I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The contribution of N-linked carbohydrates to human interferon-gamma receptor (hIFN-gamma-R) structure and function was investigated in four tumor cell lines of various tissue origin. Western and ligand blotting of native and deglycosylated, affinity-purified hIFN-gamma-R of the monocytic cell line U937 and the lymphoid cell line Raji revealed that the different sizes of hIFN-gamma-R from U937 (103 kDa) and Raji (90 kDa) cells are reduced upon either metabolic inhibition or enzymatic deglycosylation of N-linked carbohydrates to a common size of the receptor molecule with an apparent molecular mass of 73 kDa for both cell lines, indicating that heterogeneity in hIFN-gamma-R size is largely due to differential glycosylation. In all cell lines investigated, inhibition of N-linked glycosylation or modulation of carbohydrate processing did not prevent receptor transport to the cell membrane, but blocked hIFN-gamma binding capacity of membrane-expressed receptor molecules, as revealed by specific binding of hIFN-gamma-R-specific monoclonal antibody and specific binding of 125I-labeled hIFN-gamma. These data suggest that a lack of complex-type N-linked carbohydrates is associated with a complete loss of receptor function, i.e. high affinity binding capacity. Recovery of hIFN-gamma binding of deglycosylated receptors was achieved upon affinity purification and adsorption to nitrocellulose membranes, indicating that the carbohydrate side chains themselves do not directly contribute to the ligand binding epitope but seem to be essential for appropriate conformation of the receptor protein in the cell membrane.  相似文献   

15.
Stimulation of various cell types with growth factors is associated with a rapid induction in the synthesis of a nuclear matrix protein, termed 'numatrin' which was shown to be identical to the nucleolar protein B23. The abundance of numatrin was shown to be correlated with entry and progression through the S-phase. Thus, experiments were undertaken to examine whether numatrin also has DNA binding activity. Using whole nuclear extract, we showed that numatrin binds to both double-stranded (DS) DNA and to single-stranded (SS) DNA cellulose columns. Purified numatrin, which was extracted either under native conditions (in oligomeric form) or under urea conditions (in monomeric form), demonstrated significant binding to either [3H]DS-DNA or [3H]DS-DNA as shown by nitrocellulose filter binding assay. However, numatrin binding to DS-DNA was qualitatively and quantitatively different from its binding to SS-DNA. Thus, the binding of numatrin was several fold higher to DS-DNA as compared to SS-DNA. The binding to DS-DNA was reduced by 77% in the presence of 0.5 M NaCl, while the binding to SS-DNA was not affected under this condition. Furthermore, treatment of the native numatrin under conditions which caused monomerization of the protein resulted in a significant enhancement of numatrin binding to SS-DNA but did not affect the binding to DS-DNA. Following heparin-Sepharose chromatography purification (under native conditions), numatrin at picomole amounts showed significant binding to both DS-DNA and SS-DNA. Finally, numatrin was found to copurify with the complex of DNA polymerase alpha primase together with other proteins required for SV-40 in vitro replication activity. These results demonstrate that numatrin has DNA binding activity, and imply a possible role for numatrin/B23 in DNA-associated processes.  相似文献   

16.
17.
Photoaffinity labeling with 8-azidoadenosine 3':5'-monophosphate is a highly selective method for probing the cAMP-binding sites of the regulatory subunits of cAMP-dependent protein kinase and for identifying specific residues that are in close proximity to the cAMP-binding sites. The cAMP-binding site of a mutant RI-subunit has been characterized here and contrasted to the native RI-subunit. This mutant RI-subunit was generated by oligonucleotide-directed muta-genesis and lacks the entire second cAMP-binding domain which includes both of the residues, Trp260 and Tyr371, that are photolabeled in the native RI-subunit. The mutant RI-subunit, nevertheless, is photoaffinity-labeled with high efficiency, and the residue covalently modified was identified as Tyr244. The position of Tyr244 based on a computer graphic model of cAMP-binding site A is proposed and correlated with the presumed locations of Tyr371 and Trp260 in the native R-subunit. Photoaffinity labeling also can be used to detect functional cAMP-binding sites following electrophoretic transfer of the denatured protein to nitrocellulose. Labeling of the immobilized protein on nitrocellulose required a functional cAMP-binding site A that can be photoaffinity-labeled in solution based on the following criteria. 1) The type I R-subunit is photolabeled, whereas the type II R-subunit is not. A primary feature which distinguishes these two R-subunits is that the RI-subunit is photolabeled at both sites A and B, whereas covalent modification of the RII-subunit occurs only at site B. 2) The truncated mutant of the RI-subunit which lacks the entire second cAMP-binding domain can be photolabeled on nitrocellulose. 3) A mutant RI-subunit which can no longer be photolabeled in site B is still photolabeled on nitrocellulose. 4) A mutation which abolished cAMP binding to site A also abolished photoaffinity labeling after transfer to nitrocellulose.  相似文献   

18.
A DNA-binding protein has been purified from nuclei of 3T3 cells infected with polyoma virus. The assay used to detect this activity measures the amount of double-stranded DNA retained on a nitrocellulose membrane filter in the presence of binding protein. The interaction between DNA and protein is salt dependent and occurs optimally at 0.8 M NaCl. The isolated protein can bind to both circular and linear duplex DNA. Incubation of the binding protein with PM2 or polyoma DNA results in the formation of a fast sedimenting DNA structure in neutral sucrose gradients. The isolated binding protein is also capable of producing a considerable stimulation of both Escherichia coli (Pol I) and T4 DNA polymerase activities when either single-stranded or intact, native T7 DNA is used as the template. The binding protein itself is free of detectable DNA polymerase or nuclease activity.  相似文献   

19.
Antibodies raised against the 180-kDa subunit of cauliflower RNA polymerase II bind selectively to the largest subunit of RNA polymerase II purified from a variety of plant species. The selective binding of this antibody to the largest RNA polymerase II subunit has allowed us to probe for the size of this subunit in crude cell extracts, in fractions containing partially purified RNA polymerase II, and in isolated nuclei. Fractions containing RNA polymerase II were subjected to electrophoresis in the presence of sodium dodecyl sulfate, blotted onto nitrocellulose, and blots were probed with antibody. Immunoglobulin complexes were revealed with 125I-Protein A. Published purification procedures result in rapid conversion of a 220-kDa subunit to a 180-kDa polypeptide, but purification at high pH (pH 9.0) retards this proteolysis. RNA polymerase II associated with isolated nuclei is largely protected from proteolytic degradation, and a 240-kDa polypeptide as well as a 220-kDa polypeptide can be detected. These results suggest that the 180-kDa subunit of RNA polymerase II arises artificially during cell lysis and enzyme purification, and that even the 220-kDa polypeptide may be a degradation product of a 240-kDa polypeptide in plants.  相似文献   

20.
Searching for potential Z-DNA in genomic Escherichia coli DNA   总被引:3,自引:0,他引:3  
The Clarke-Carbon library with Escherichia coli DNA cloned into plasmid ColE1 was partially screened for Z-DNA with the monoclonal antibody Z-D11 using the retardation of the covalently closed circular DNA-protein complex by nitrocellulose filters. About 85% of the plasmids tested at "natural" supercoil density bound to the filter. Together with binding studies of the iodinated antibody, one Z-DNA segment per about 18,000 base-pairs of E. coli DNA is observed. One clone containing the region around the lactose operon, pLC20-30, was studied in detail. Subcloning a partial Sau3A digest and selection with antibodies gave three different Z-forming sites. They were mapped to within about +/- 20 base-pairs by preparing unidirectional deletion clones, selection of protein binding plasmids on nitrocellulose filters and subsequent sizing on agarose gels. The size of the Z-DNA-forming segments was estimated from two-dimensional gels of topoisomer mixtures. Together with results from sequencing of the plasmid DNA using exonuclease III to create single-stranded templates, stretches of alternating purine-pyrimidine tracts of 12 to 15 base-pairs were found to be responsible for Z-DNA formation. One of the sites was found in the middle of the lacZ gene, where it might be an obstacle for RNA polymerase. The methods used here should also be helpful for studying other DNA-protein sites, especially if they exist only in supercoiled DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号