首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action of cytochalasin D on cytoskeletal networks   总被引:53,自引:32,他引:21       下载免费PDF全文
Extraction of SC-1 cells (African green monkey kidney) with the detergent Triton X-100 in combination with stereo high-voltage electron microscopy of whole mount preparations has been used as an approach to determine the mode of action of cytochalasin D on cells. The cytoskeleton of extracted BSC-1 cells consists of substrate-associated filament bundles (stress fibers) and a highly cross-linked network of four major filament types extending throughout the cell body; 10-nm filaments, actin microfilaments, microtubules, and 2- to 3-nm filaments. Actin filaments and 2- to 3-nm filaments form numerous end- to-side contacts with other cytoskeletal filaments. Cytochalasin D treatment severely disrupts network organization, increases the number of actin filament ends, and leads to the formation of filamentous aggregates or foci composed mainly of actin filaments. Metabolic inhibitors prevent filament redistribution, foci formation, and cell arborization, but not disorganization of the three-dimensional filament network. In cells first extracted and then treated with cytochalasin D, network organization is disrupted, and the number of free filament ends is increased. Supernates of preparations treated in this way contain both short actin filaments and network fragments (i.e., actin filaments in end-to-side contact with other actin filaments). It is proposed that the dramatic effects of cytochalasin D on cells result from both a direct interaction of the drug with the actin filament component of cytoskeletal networks and a secondary cellular response. The former leads to an immediate disruption of the ordered cytoskeletal network that appears to involve breaking of actin filaments, rather than inhibition of actin filament-filament interactions (i.e., disruption of end-to-side contacts). The latter engages network fragments in an energy-dependent (contractile) event that leads to the formation of filament foci.  相似文献   

2.
The cytoskeleton that supports microvilli in intestinal epithelial cells was visualized by the quick-freeze, deep-etch, rotary-replication technique (Heuser and Salpeter. 1979. J. Cell Biol. 82: 150). Before quick freezing, cells were exposed to detergents or broken open physically to clear away the granular material in their cytoplasm that would otherwise obscure the view. After such extraction, cells still displayed a characteristic organization of cytoskeletal filaments in their interiors. Platinum replicas of these cytoskeletons had sufficient resolution to allow us to identify the filament types present, and to determine their characteristic patterns of interaction. The most important new finding was that the apical "terminal web" in these cells, which supports the microvilli via their core bundles of actin filaments, does not itself contain very much actin but instead is comprised largely of narrow strands that interconnect adjacent actin bundles with one another and with the underlying base of intermediate filaments. These strands are slightly thinner than actin, do not display actin's 53A periodicity, and do not decorate with myosin subfragment S1. On the contrary, two lines of evidence suggested that these strands, could include myosin molecules. First, other investigators have shown that myosin is present in the terminal web (Mooseker et al. 1978. J. Cell Biol. 79: 444-453), yet we could find no thick filaments in this area. Second, we found that the strands were removed completely in the process of decorating the core filament bundles with the myosin subfragment S1, suggesting that they had been competitively displaced by exogenous myosin. We conclude that myosin may play a structural role in these cells, via its cross-linking distribution, in addition to whatever role it plays in microvillar motility.  相似文献   

3.
The structural and biochemical changes of cytoskeletal components of retinal pigmented epithelial cells were studied during the development of chicken eyes. When the cytoskeletal components of the pigmented epithelial cells from various stages of development were examined by SDS PAGE, actin contents in the cells markedly increased between the 15-d-old and hatching stages. Immunofluorescence microscopy showed that chicken pigmented epithelial cells have two types of actin bundles. One is the circumferential bundle associated with the zonula adherens region as previously reported (Owaribe, K., and H. Masuda, 1982, J. Cell Biol., 95:310-315). The other is the paracrystalline bundle forming the core of the apical projections. The increase in actin contents after the 15-d-old stage is accompanied by the formation and elongation of core filaments of apical projections in the cells. During this period the apical projections extend into extracellular space among outer and inner segments of photoreceptor cells. Accompanying this change is an elongation of the paracrystalline bundles of actin filaments in the core of the projection. By electron microscopy, the bundles decorated with muscle heavy meromyosin showed unidirectional polarity, and had transverse striations with approximately 12-nm intervals, as determined by optical diffraction of electron micrographs. Since the shape of these bundles was not altered in the presence or absence of Ca2+, they seemed not to have villin-like proteins. Unlike the circumferential bundles, the paracrystalline bundles did not contract when exposed to Mg-ATP. These observations indicate that the paracrystalline bundles are structurally and functionally different from the circumferential actin bundles.  相似文献   

4.
Terminal webs prepared from mouse intestinal epithelial cells were examined by the quick-freeze, deep-etch, and rotary-replication method. The microvilli of these cells contain actin filaments that extend into the terminal web in compact bundles. Within the terminal web these bundles remain compact; few filaments are separated from the bundles and fewer still bend towards the lateral margins of the cell. Decoration with subfragment 1 (S1) of myosin confirmed that relatively few actin filaments travel horizontally in the web. Instead, between actin bundles there are complicated networks of the fibrils. Here we present two lines of evidence which suggest that myosin is one of the major cross-linkers in the terminal web. First, when brush borders are exposed to 1 mM ATP in 0.3 M KCl, they lose their normal ability to bind antimyosin antibodies as judged by immunofluorescence, and they lose the thin fibrils normally found in deep-etch replicas. Correspondingly, myosin is released into the supernatant as judged by SDS gel electrophoresis. Second, electron microscope immunocytochemistry with antimyosin antibodies followed by ferritin- conjugated second antibodies leads to ferritin deposition mainly on the fibrils at the basal part of rootlets. Deep-etching also reveals that the actin filament bundles are connected to intermediate filaments by another population of cross-linkers that are not extracted by ATP in 0.3 M KCl. From these results we conclude that myosin in the intestinal cell may not only be involved in a short range sliding-filament type of motility, but may also play a purely structural role as a long range cross-linker between microvillar rootlets.  相似文献   

5.
Summary Brush cells represent a population of epithelial cells with unknown function, which are scattered throughout the epithelial lining of both the respiratory system and the alimentary system. These cells are reliably distinguished from other epithelial cells only at the ultrastructural level by the presence of an apical tuft of stiff microvilli and extremely long microvillar rootlets that may project down to the perinuclear space. In the present study we show that brush cells can be identified in tissue sections even at the light microscopic level by immunostaining with antibodies against villin and fimbrin, two proteins that crosslink actin filaments to form bundles. In brush cells, villin and fimbrin are not only present in the actin filament core bundles of apical microvilli and their long rootlets but, in addition, both proteins are also associated with microvilli extending from the basolateral cell surface of the brush cells. Basolateral immunostaining specific for villin and fimbrin does not occur in any other epithelial cell type of the respiratory and alimentary tract. Thus immunostaining with antibodies against both proteins allows unequivocal identification of individual brush cells even in sectional planes that do not contain the brightly stained apical tuft of microvilli and their long rootlets.  相似文献   

6.
The distribution of actin filaments in Malpighian tubules of the fleshfly Sarcophaga bullata (Parker) was investigated before and after metamorphosis by means of the rhodamine phalloidin staining method. The numerous primary cells show a pattern of thick basal actin bundles resembling stress fibres of cultured cells, while the apical microvillar zone shows a bright and homogeneous labelling. The less abundant stellate cells contain no such basal actin bundles and their apical microvillar zone gets only faintly stained. Late larval stages display fingerlike infoldings and an increased actin filament concentration at the apical membrane of the stellate cells. During metamorphosis the Malpighian tubules dedifferentiate and eventually redifferentiate to give rise to adult tubules resembling larval ones. The different types of actin filament organisation in the primary and stellate cells of the Malpighian tubules are discussed.  相似文献   

7.
Summary Human pancreatic tissue was investigated by immunohistochemistry using a polyclonal antibody against the actin binding protein villin, which participates in the formation of actin filament bundles in the microvilli. In cells of the different parts of the pancreatic duct system as well as in the acinar cells villin immunoreactivity was located mainly at the apical cell surface. This was confirmed by the ultrastructural demonstration of microvilli on the surface of duct and acinar cells, which exhibited the typical actin bundles. In chronic pancreatitis the staining for villin in duct-like structures of degenerative pancreatic tissue was irregular or even absent. This correlated with the electron microscopic observation of duct-like structures known as tubular complexes composed of cells devoid of microvilli at the apical cell surface. At the light microscopical level degenerative structures without lumen and of unknown origin showed a strong staining for villin at their basal cell surface.  相似文献   

8.
Human pancreatic tissue was investigated by immunohistochemistry using a polyclonal antibody against the actin binding protein villin, which participates in the formation of actin filament bundles in the microvilli. In cells of the different parts of the pancreatic duct system as well as in the acinar cells villin immunoreactivity was located mainly at the apical cell surface. This was confirmed by the ultrastructural demonstration of microvilli on the surface of duct and acinar cells, which exhibited the typical actin bundles. In chronic pancreatitis the staining for villin in duct-like structures of degenerative pancreatic tissue was irregular or even absent. This correlated with the electron microscopic observation of duct-like structures known as tubular complexes composed of cells devoid of microvilli at the apical cell surface. At the light microscopical level degenerative structures without lumen and of unknown origin showed a strong staining for villin at their basal cell surface.  相似文献   

9.
The localisation of actin filaments was studied in rat urothelial cells during differentiation which accompanied regeneration after cell damage induced by cyclophosphamide (CP). By immunofluorescence it was established that actin filaments equally stained along the cell circumference in basal and intermediate cells, while basolateral cell membrane expression was found in terminally differentiated superficial cells. During regeneration, after CP treatment, simple urothelial hyperplasia developed with smaller cuboidal superficial cells, in which actin filaments were equally distributed under the apical and basolateral plasma membranes. As demonstrated by immunoelectron microscopy, the apical surface of these superficial cells was covered with microvilli containing bundles of actin filaments. Within 1 week, the urothelium reverted to its normal three-layer thickness. Superficial cells became larger and flattened and the unthickened apical plasma membrane matured into a thick asymmetric unit membrane. Concomitantly actin filaments disappeared from apical areas of superficial cells while remaining abundant at basolateral areas. Our results indicate that in the urothelium subcellular distribution of actin filaments can be considered as a marker of cell differentiation. Accepted: 16 September 1999  相似文献   

10.
The contribution of brush border cytoskeletal proteins (actin, villin, fimbrin, and brush border myosin-1) to organization of the cytoskeletal network underlying apical plications of oxynticopeptic cells was examined by immunohistochemical techniques in frozen sections of gastric mucosa from the bullfrog, Rana catesbeiana. Apical localization of F-actin with phalloidin in oxynticopeptic cells inhibited with cimetidine revealed small, punctate domains within the apical cytoplasm that were consistent with the presence of short microvilli revealed by electron microscopy. Localization of F-actin in cells stimulated with forskolin was limited to a wide continuous band of cytoplasm corresponding to the location of numerous long surface folds. Inhibition of protein synthesis with cycloheximide did not prevent acid secretion or formation of actin filaments within surface folds in stimulated oxynticopeptic cells, suggesting that the formation of filaments does not require actin synthesis. Staining of gastric mucosae with fluorescent DNase-1 demonstrated that oxynticopeptic cells possess an unusually large pool of non-filamentous actin. Taken together, these results suggest that actin-filament formation in stimulated cells occurs by polymerization of an existing pool of non-filamentous actin. Localization of antibodies specific for villin and fimbrin revealed that these proteins were present within intestinal absorptive cells and gastric surface and neck cells but were not present within inhibited or stimulated oxynticopeptic cells. Brush border myosin-1, present in intestinal absorptive cells, was not present in gastric epithelium. Thus, we propose that actin-containing projections in oxynticopeptic cells are not organized like intestinal microvilli and that filament formation occurs after stimulation by modulating intracellular pools of filamentous and non-filamentous actin.  相似文献   

11.
Summary Retinal pigmented epithelial cells of chicken have circumferential microfilament bundles (CMBs) at the zonula adherens region. Isolated CMBs are polygons filled with a meshwork composed primarily of intermediate filaments; they show three major components of 200000, 55000, and 42000 daltons in SDS-gel electrophoresis. Here we have characterized the 55000-dalton protein immunochemically and ultrastructurally. Immunoblotting and immunofluorescence microscopy have shown that the 55000-dalton protein is an intermediate filament protein, vimentin.Vimentin filaments changed their distribution during differentiation of pigmented epithelial cells in culture. The protein in the elongated cells showed a fibroblast-type pattern of intermediate filaments. During epithelium formation, the filaments were uniformly distributed and formed a finer meshwork at the apical level. In pigmented epithelial cells that differentiated and matured in culture, vimentin and actin exhibited their characteristic behavior after treatment with colcemid. In the central to basal region of the cell, intermediate filaments formed thick perinuclear bundles. In the apical region, however, intermediate filaments changed in organization from a nonpolarized meshwork to a polarized bundle-like structure. Simultaneously, new actin bundles were formed, running parallel to the intermediate filaments. This suggests that there is some interaction between microfilaments and intermediate filaments in the apical region of these cells.  相似文献   

12.
Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.  相似文献   

13.
Actin has many diverse functions in the outer retina. To help elucidate its organization in this area, we have investigated the extent of its association with the actin cross-linking protein alpha-actinin. Ultrathin sections of chicken retina were double-immunolabelled with monospecific antibodies against actin and alpha-actinin. The highest relative amount of alpha-actinin to actin label was measured in the adherens junctions between the individual retinal pigmented epithelial (RPE) cells and between the photoreceptor and Mueller cells; in the photoreceptor myoid; and in the RPE basal microvilli. The lowest amount was in the Mueller cell microvilli, the RPE apical processes, and in the photoreceptor ellipsoid. It is likely that the areas containing the highest ratio of alpha-actinin to actin labelling are where the actin filaments are most highly cross-linked into bundles and linked to the plasma membrane by alpha-actinin. Actin filaments terminate in these areas, and, except for the myoid region, they are involved in cell-cell or cell-substrate adherens junctions.  相似文献   

14.
The fiber cells of the eye lens possess a unique cytoskeletal system known as the "beaded-chain filaments" (BFs). BFs consist of filensin and phakinin, two recently characterized intermediate filament (IF) proteins. To examine the organization and the assembly of these heteropolymeric IFs, we have performed a series of in vitro polymerization studies and transfection experiments. Filaments assembled from purified filensin and phakinin exhibit the characteristic 19-21-nm periodicity seen in many types of IFs upon low angle rotary shadowing. However, quantitative mass-per-length (MPL) measurements indicate that filensin/phakinin filaments comprise two distinct and dissociable components: a core filament and a peripheral filament moiety. Consistent with a nonuniform organization, visualization of unfixed and unstained specimens by scanning transmission electron microscopy (STEM) reveals the the existence of a central filament which is decorated by regularly spaced 12-15-nm-diam beads. Our data suggest that the filamentous core is composed of phakinin, which exhibits a tendency to self-assemble into filament bundles, whereas the beads contain filensin/phakinin hetero-oligomers. Filensin and phakinin copolymerize and form filamentous structures when expressed transiently in cultured cells. Experiments in IF-free SW13 cells reveal that coassembly of the lens-specific proteins in vivo does not require a preexisting IF system. In epithelial MCF-7 cells de novo forming filaments appear to grow from distinct foci and organize as thick, fibrous laminae which line the plasma membrane and the nuclear envelope. However, filament assembly in CHO and SV40-transformed lens- epithelial cells (both of which are fibroblast-like) yields radial networks which codistribute with the endogenous vimentin IFs. These observations document that the filaments formed by lens-specific IF proteins are structurally distinct from ordinary cytoplasmic IFs. Furthermore, the results suggest that the spatial arrangement of filensin/phakinin filaments in vivo is subject to regulation by host- specific factors. These factors may involve cytoskeletal networks (e.g., vimentin IFs) and/or specific sites associated with the cellular membranes.  相似文献   

15.
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed.  相似文献   

16.
Weinbaum S  Guo P  You L 《Biorheology》2001,38(2-3):119-142
In this paper we shall describe new mechanical models for the deformation of the actin filament bundles in kidney microvilli and osteocytic cell processes to see whether these cellular extensions, like the stereocilia on hair cells in the inner ear, can function as mechanotransducers when subject to physiological flow. In the case of kidney microvilli we show that the hydrodynamic drag forces at the microvilli tip are <0.01 pN, but there is a 38-fold force amplification on the actin filaments at the base of the microvilli due to the resisting moment in its terminal web. This leads to forces that are more than sufficient to deform the terminal web complex of the microvillus where ezrin has been shown to couple the actin cytoskeleton to the Na(+)/H(+) exchanger. In the case of bone cell processes we show that the actin filament bundles have an effective Young's modulus that is 200 times > the measured modulus for the actin gel in the cell body. It is, therefore, unlikely that bone cell processes respond in vivo to fluid shear stress, as proposed in [59]. However, we show that the fluid drag forces on the pericellular matrix which tethers the cell processes to the canalicular wall can produce a 20-100 fold amplification of bone tissue strains in the actin filament bundle of the cell process.  相似文献   

17.
Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that myosin X takes steps of ∼18 nm along a fascin-actin bundle. This step-size is well short of the 36-nm step-size observed in myosin V and myosin VI that corresponds to the actin pseudohelical repeat distance. Myosin X is able to walk along bundles with this step-size if it straddles two actin filaments, but would be quickly forced to spiral into the constrained interior of the bundle if it were to use only a single actin filament. We also demonstrate that myosin X takes many sideways steps as it walks along a bundle, suggesting that it can switch actin filament pairs within the bundle as it walks. Sideways steps to the left or the right occur on bundles with equal frequency, suggesting a degree of lateral flexibility such that the motor's working stroke does not bias it to the left or to the right. On single actin filaments, we find a broad mixture of 10-20-nm steps, which again falls short of the 36-nm actin repeat. Moreover, the motor leans to the right as it walks along single filaments, which may require myosin X to adopt strained configurations. As a control, we also tracked myosin V stepping along actin filaments and fascin-actin bundles. We find that myosin V follows a narrower path on both structures, walking primarily along one surface of an actin filament and following a single filament within a bundle while occasionally switching to neighboring filaments. Together, these results delineate some of the structural features of the motor and the track that allow myosin X to recognize actin filament bundles.  相似文献   

18.
The surface of the syncytial trophoblast of the human placenta is covered by a microvillous (brush) border that is in direct contact with maternal blood. Because of this location, it is the site of a variety of transport, enzymatic and receptor activities vital to many placental functions. The organization of the brush border as well as other features of placental villus organization may well be influenced by the distribution of cytoplasmic actin filaments. In order to determine the distribution of actin filaments in human placenta, small pieces of villi were briefly fixed in glutaraldehyde, permeabilized with saponin, and incubated in solutions containing subfragment 1 of myosin (S1). After S1 decoration of actin filaments, tissue was fixed in glutaraldehyde containing tannic acid in order to better visualize the polarity of the filaments, and prepared for electron microscopic examination. The microvilli each contained a core of actin filaments running from the tip of the microvillus to the apical cytoplasm. Most of the actin filaments displayed a distinct polarity, with the S1 arrowheads pointing away from the microvillar tips. These filaments extended only a short distance into the apical cytoplasm. There appeared to be another group of actin filaments in a matlike arrangement in the apical cytoplasm. Coated pits and vesicles were often observed between the microvilli. There appeared to be no clear association between the coated pits and decorated actin filaments, but this was difficult to establish with certainty because of the close proximity of the microvilli. Bundles of actin filaments were sometimes observed near the basal cell surface of the syncytial trophoblast, and in pericytes and capillary endothelial cells in the cores of the villi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Actin-containing filaments in cultures of differentiating chick skeletal muscle were examined by indirect immunofluorescence and transmission electron microscopy (TEM). As early as 20 h in culture, a large proportion of the pre-fusion population appeared as elongated, bipolar cells which contained actin filaments parallel to the longitudinal axis of the cell. During fusion, most of the mononucleated cells were bipolar and contained actin filament bundles which appeared to extend the entire length of the cell body and lie in close proximity to the plasma membrane. Striations were observed within actin filament bundles only after fusion had been completed. The small number of non-myogenic cells present in the cultures were not observed to display a bipolar morphology, orientation of actin fibers parallel to the longitudinal axis of the cell, or striations in their actin filament bundles.  相似文献   

20.
The distribution patterns of actin filaments in the non-fixed stigma of Eichhornia crassipes (Mart) Solms were examined with fluorescence microscopy by using FITC-phalloidin as fluorescence probe. In the finger-like papillae the distribution patterns of actin filament varied greatly with actin localization. In the basal region fusiform bodies emitting intense fluorescence were scatteredly distributed. In the middle zone(often occupied by dense cytoplasm) a network composed of numerous actin filaments appeared. These filaments of various diameters lay more or less parallelly to the cell axis, extending upwards and gradually merging into some thick dense bundles . In the apical region a few actin filaments sparsely and longitudinally distrubuted in the subcortical cytoplasm,and diffuse fluorescence often appeared in the spheroidal protrusion. Furthermore,an actin network composed of very thin filaments in the periplasm of the cell was observed ;the constituent filaments were in helical arrangement and often branched and interconnected. Considering possible relationship between the actin configurations and the physiological activities and functions of the stigma cells, it is proposed that the active cytoplasmic streaming, the translocation of solutes towards the apical region ,the active secretion of exudate from the spheroidal protrusion and maintaining of the structural integrity and stability of periplasm, all these might be considered as certain physiological events being affected or regulated by the actin filament patterns described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号