首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human chromosome 11p15 comprises two imprinted domains important in the control of fetal and postnatal growth. Novel studies establish that imprinting at one of these, the IGF2-H19 domain, is epigenetically deregulated (with loss of DNA methylation) in Silver-Russell Syndrome (SRS), a congenital disease of growth retardation and asymmetry. Previously, the exact opposite epigenetic alteration (gain of DNA methylation) had been detected at the domain's 'imprinting control region' (ICR) in patients with Beckwith-Wiedemann Syndrome (BWS), a complex disorder of fetal overgrowth. However, more frequently, BWS is caused by loss of DNA methylation at the ICR that regulates the second imprinted domain at 11p15. Interestingly, a similar epigenetic alteration (with loss of methylation) at a putative ICR on human chromosome 6q24, is involved in transient neonatal diabetes mellitus (TNDM), a congenital disease with intrauterine growth retardation and a transient lack of insulin. Thus, fetal and postnatal growth is epigenetically controlled by different ICRs, at 11p15 and other chromosomal regions.  相似文献   

2.
《Epigenetics》2013,8(3):377-386
The intrauterine environment has the potential to “program” the developing fetus in a way that can be potentially deleterious to later health. While in utero environmental/stochastic factors are known to influence DNA methylation profile at birth, it has been difficult to assign specific examples of epigenetic variation to specific environmental exposures. Recently, several studies have linked exposure to smoking with DNA methylation change in the aryl hydrocarbon receptor repressor (AHRR) gene in blood. This includes hypomethylation of AHRR in neonatal blood in response to maternal smoking in pregnancy. The role of AHRR as a negative regulator of pathways involved in pleiotropic responses to environmental contaminants raises the possibility that smoking-induced hypomethylation is an adaptive response to an adverse in utero environmental exposure. However, the tissue specificity of the response to maternal smoking, and the stability of the methylation changes early in life remain to be determined. In this study we analyzed AHRR methylation in three cell types—cord blood mononuclear cells (CBMCs), buccal epithelium, and placenta tissue—from newborn twins of mothers who smoked throughout pregnancy and matched controls. Further, we explored the postnatal stability of this change at 18 months. Our results confirm the previous association between maternal smoking and AHRR methylation in neonatal blood. In addition, this study expands the region of AHRR methylation altered in response to maternal smoking during pregnancy and reveals the tissue-specific nature of epigenetic responses to environmental exposures in utero. Further, the evidence for postnatal stability of smoking-induced epigenetic change supports a role for epigenetics as a mediator of long-term effects of specific in utero exposures in humans. Longitudinal analysis of further specific exposures in larger cohorts is required to examine the extent of this phenomenon in humans.  相似文献   

3.
The intrauterine environment has the potential to “program” the developing fetus in a way that can be potentially deleterious to later health. While in utero environmental/stochastic factors are known to influence DNA methylation profile at birth, it has been difficult to assign specific examples of epigenetic variation to specific environmental exposures. Recently, several studies have linked exposure to smoking with DNA methylation change in the aryl hydrocarbon receptor repressor (AHRR) gene in blood. This includes hypomethylation of AHRR in neonatal blood in response to maternal smoking in pregnancy. The role of AHRR as a negative regulator of pathways involved in pleiotropic responses to environmental contaminants raises the possibility that smoking-induced hypomethylation is an adaptive response to an adverse in utero environmental exposure. However, the tissue specificity of the response to maternal smoking, and the stability of the methylation changes early in life remain to be determined. In this study we analyzed AHRR methylation in three cell types—cord blood mononuclear cells (CBMCs), buccal epithelium, and placenta tissue—from newborn twins of mothers who smoked throughout pregnancy and matched controls. Further, we explored the postnatal stability of this change at 18 months. Our results confirm the previous association between maternal smoking and AHRR methylation in neonatal blood. In addition, this study expands the region of AHRR methylation altered in response to maternal smoking during pregnancy and reveals the tissue-specific nature of epigenetic responses to environmental exposures in utero. Further, the evidence for postnatal stability of smoking-induced epigenetic change supports a role for epigenetics as a mediator of long-term effects of specific in utero exposures in humans. Longitudinal analysis of further specific exposures in larger cohorts is required to examine the extent of this phenomenon in humans.  相似文献   

4.
5.
Intrauterine hyperglycemic environment could harm the fetus making it more susceptible to develop postnatal glucose intolerance. A possible mechanism is compromise of the fetal pancreatic development. We previously found that a high sucrose low copper diabetogenic diet induces type 2 diabetes in the Cohen diabetic sensitive rats, but not in the Sabra control rats. However, oxidative stress was observed in the placenta and term fetal liver of diabetic and nondiabetic controls. We now investigated whether the fetal pancreas is affected by this diet and whether the effects result from oxidative stress, maternal hyperglycemia, or both. Term fetal pancreases were evaluated for morphology, beta cells, oxidative stress, apoptosis, and DNA methylation. There were no microscopic changes in hematoxylin and eosin stained sections and beta cells immunostaining in the pancreas of fetuses of both strains. Fetuses of the sensitive strain fed diabetogenic diet had significantly higher activity of superoxide dismutase and catalase, elevated levels of low molecular weight antioxidants, and more intense immunostaining for nuclear factor kappa‐B and hypoxia inducing factor‐1α. Both strains fed diabetogenic diet had increased immunostaining for Bcl‐2‐like protein and caspase 3 and decreased immunostaining for 5‐methylcytosine in their islets and acini. Our data suggest that maternal diabetogenic diet alters apoptotic rate and epigenetic steady states in the term fetal pancreas, unrelated to maternal diabetes. Maternal hyperglycemia further increases pancreatic oxidative stress, aggravating the pancreatic damage. The diet‐induced insults to the fetal pancreas may be an important contributor to the high susceptibility to develop diabetes following metabolic intrauterine insults  相似文献   

6.
During intrauterine human placentation, extravillous trophoblast invades uterine tissues starting with proliferating stem cells at the basement membrane of anchoring villi. Transition to the postproliferative invasive phenotype takes place several cell layers distant. Here we show that in intrauterine pregnancies invasive trophoblast comprises three cellular phenotypes: a. Small spindle-shaped trophoblast cells are found along the whole invasive pathway throughout pregnancy. They are embedded in little heterogeneous extracellular matrix but expose only fibronectin receptors (integrins alpha5beta1, alphavbeta3/5), resulting in a partial integrin-matrix mismatch. b. Large polygonal trophoblast cells are rare in early pregnancy but increase in number towards term. They secrete ample heterogeneous extracellular matrix and expose integrins specifically matching the opposing matrix molecules (integrins alpha6beta4, alpha5beta1). c. Multinucleated giant cells in all stages of pregnancy form a kind of peripheral shell of trophoblast.In contrast to intrauterine pregnancies, in viable tubal pregnancies, Mib-1 expression indicating proliferation, extends deeply into the invasive pathway. Trophoblast cells of the invasive pathway mostly belong to the small spindle-shaped phenotype and secrete little extracellular matrix, mainly fibronectins. At the transition to the second cellular layer of cell columns expression of integrin alpha6beta4 switches to expression of alpha5beta1 and alphavbeta3/5. Viable tubal pregnancies are characterised by a broad overlap of proliferative with invasive phenotype as well as a general integrin-matrix mismatch. The differences in proliferation patterns, cellular phenotype and matrix-integrin co-localisation may well explain the increase of invasiveness of normal extravillous trophoblast from term intrauterine via early intrauterine to viable tubal pregnancies.  相似文献   

7.
ABSTRACT: Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.  相似文献   

8.
A retrospective cohort study was conducted to explore growth variation during the intrauterine and early postnatal period by sex and nature of high-risk factors (i.e. physiological and pathological) in 831 Korean infants at a University hospital. The results showed that infants with a physiological risk showed a more congruent intrauterine growth pattern compared to those with a pathological risk. Particularly with a physiological risk, female infants experienced more compatible intrauterine and postnatal growth than males, although male infants were heavier than female infants at a given gestational age. In conclusion bigger may not necessarily be better for prenatal growth in humans. A more confluent intrauterine growth in infants with physiological risk can be beneficial for early postnatal catch-up growth. From an evolutionary perspective, female infants with a physiological risk may keep their advantageous edge over male infants during the early postnatal period although such an advantage may not be present with a pathological condition.  相似文献   

9.
We examined effects of maternal stress on prenatal serum concentrations of testosterone and estradiol and on postnatal reproductive traits in female mice from different intrauterine positions. On Day 18 of fetal life, control females positioned in utero between two male fetuses (2M females) had higher concentrations of testosterone and lower concentrations of estradiol in serum than control female fetuses located between two females (0M females). Control females positioned between a male and a female fetus (1M females) had intermediate levels of both hormones. Prior intrauterine position in control females accounted for differences in genital morphology (length of the anogenital separation) at birth and length of estrous cycles during adulthood. Maternal stress eliminated these postnatal differences due to prior intrauterine position: all 0M, 1M, and 2M female offspring of stressed mothers exhibited postnatal traits that were indistinguishable from those of control 2M females. Maternal stress resulted in an increase of over 1 ng/ml in serum testosterone in all female fetuses; the magnitude of the increase was similar for 0M, 1M, and 2M females. There was no effect of maternal stress on serum concentrations of estradiol in 0M and 2M female fetuses. Maternal stress resulted in a dramatic change in the postnatal traits of 0M females, whereas 2M females showed no change. Since the effect of maternal stress on sex steroids was similar among fetuses from different intrauterine positions but postnatal response to maternal stress varied by intrauterine position, other components of the endocrine system may mediate effects of maternal stress on these postnatal characteristics.  相似文献   

10.
In the vestibular organs of the inner ear, an early postnatal decline in the capacity for cell proliferation appears to be responsible for limits to hair cell regeneration that are unique to mammals. We have investigated the time course of that decline in cell proliferation and its potential regulation by glycogen synthase kinase-3 (GSK3). Our immunoblots have revealed that inactive GSK3 beta decreases postnatally in the murine utricular epithelium, as E-cadherin and the active forms of GSK3 alpha and GSK3 beta each increase. In cultured utricular epithelia, pharmacological inhibition of GSK3 by LiCl and SB-216763 increased cell proliferation across a range of postnatal ages. LiCl treatments also led to increased levels of beta-catenin and Snail and decreased expression of E-cadherin. Transfection with a dominant-negative GSK3 beta enhanced proliferation in these epithelia in a cell-autonomous manner, while overexpression of wild-type GSK3 beta markedly reduced it. The evidence from these measurements and experimental manipulations indicates that the balance of active and inactive forms of GSK3 helps to determine whether mammalian vestibular supporting cells will proliferate; permitting proliferation during early development when inactive GSK3 predominates and progressively inhibiting proliferation, and thereby limiting the capacity for hair cell regeneration as more GSK3 becomes active during the first week of postnatal maturation.  相似文献   

11.
Epigenetic changes marked by DNA methylation have been proposed to play a role in age-related disease. We investigated DNA methylation changes in cardiovascular atherosclerotic tissues and in-vitro vascular senescence in the promoter of estrogen receptor beta gene, which has essential roles in vascular function. Coronary atherosclerotic tissues showed higher methylation levels (28.7%) than normal appearing arterial (6.7%-10.1%) and venous tissues (18.2%). In comparing estrogen receptor beta methylation between plaque and non-plaque regions in ascending aorta, common carotid artery, and femoral artery of two patients, the plaque lesions showed consistently higher methylation levels than non-plaque regions. Passage-dependent increased estrogen receptor beta methylation was observed in three of six human aortic endothelial or smooth muscle cell lines cultured in-vitro to vascular senescence. Estrogen receptor beta expression in these vascular cell lines was significantly activated by DNA-methyltransferase inhibition. This activity was augmented by histone deacetylase inhibition. These findings provide evidence of epigenetic dysregulation of estrogen receptor beta in atherosclerosis and vascular aging. We suggest that focal epigenetic changes in estrogen receptor beta contribute to the development of atherosclerosis and vascular aging.  相似文献   

12.
《Epigenetics》2013,8(5):579-592
Within-pair comparison of monozygotic (MZ) twins provides an ideal model for studying factors that regulate epigenetic profile, by controlling for genetic variation. Previous reports have demonstrated epigenetic variability within MZ pairs, but the contribution of early life exposures to this variation remains unclear. As epigenetic marks govern gene expression, we have used gene expression discordance as a proxy measure of epigenetic discordance in MZ twins at birth in two cell types. We found strong evidence of expression discordance at birth in both cell types and some evidence for higher discordance in twin pairs with separate placentas. Genes previously defined as being involved in response to the external environment showed the most variable expression within pairs, independent of cell type, supporting the idea that even slight differences in intrauterine environment can influence expression profile. Focusing on birthweight, previously identified as a predisposing factor for cardiovascular, metabolic and other complex diseases, and using a statistical model that estimated association based on within-pair variation of expression and birthweight, we found some association between birthweight and expression of genes involved in metabolism and cardiovascular function. This study is the first to examine expression discordance in newborn twins. It provides evidence of a link between birthweight and activity of specific cellular pathways and, as evidence points to gene expression profiles being maintained through cell division by epigenetic factors, provides a plausible biological mechanism for the previously described link between low birthweight and increased risk of later complex disease.  相似文献   

13.
14.
While somatic cell nuclear transfer (SCNT) has been successful in several species, many pregnancies are lost and anomalies are found in fetal and perinatal stages. In this study SCNT and artificial inseminations (AI) populations were compared for litter size, average birth weight, piglets alive at birth, stillborn, mummies, dead at the first week, intrauterine growth restriction (IUGR) and large for gestational age (LGA). Twenty-three SCNT litters (143 individuals) were compared to 112 AI litters (1300 individuals). Litter size average was 11.5 for AI and 6.2 for SCNT. Litter weight and average birth weight adjusted by litter size were significantly (p < 0.05) higher in AI than in SCNT litters. The SCNT population had a significant (p < 0.01) increase in the number of IUGRs per litter with LSmeans 7.2 +/- 1.4 versus 19.4 +/- 3.5 and means 8.0 +/- 10.8 versus 15.5 +/- 24.5 for AI and SCNT, respectively. Additionally, there was a trend for higher postnatal mortality and stillbirths in the SCNT population. These findings demonstrate that there are some differences between SCNT-derived and AI litters. SCNT-derived pigs are excellent models to study epigenetic factors and genes involved in IUGRs, and to develop effective means to improve fetal growth in humans and animals.  相似文献   

15.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

16.
《Epigenetics》2013,8(2):171-176
Being born small for gestational age (SGA), a proxy for intrauterine growth restriction (IUGR), and prenatal famine exposure are both associated with a greater risk of metabolic disease. Both associations have been hypothesized to involve epigenetic mechanisms. We investigated whether prenatal growth restriction early in pregnancy was associated with changes in DNA methylation at loci that were previously shown to be sensitive to early gestational famine exposure. We compared 38 individuals born preterm (&lt;32 weeks) and with a birth weight too low for their gestational age (-1SDS) and a normal postnatal growth (>-1SDS at 3 months post term; “AGA”). The SGA individuals were not only lighter at birth, but also had a smaller length (P=3.3x10-13) and head circumference at birth (P=4.1x10-13). The DNA methylation levels of IGF2, GNASAS, INSIGF and LEP were 48.5%, 47.5%, 79.4% and 25.7% respectively. This was not significantly different between SGA and AGA individuals. Risk factors for being born SGA, including preeclampsia and maternal smoking, were also not associated with DNA methylation at these loci. Growth restriction early in development is not associated with DNA methylation at loci shown to be affected by prenatal famine exposure. Our and previous results by others indicate that prenatal growth restriction and famine exposure may be associated with different epigenetic changes or non epigenetic mechanisms that may lead to similar later health outcomes.  相似文献   

17.
Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. Parental specific epigenetic modifications are imprinted on a subset of genes in the mammalian genome during germ cell maturation. Imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure. All such epigenetic modifications are potentially reversible and can be erased. After the erasure step, new parental imprints are initiated, resulting in reintroduction of sex-specific imprints in the male and female germ line. Although the function of genomic imprinting is not clear, it has been proposed that it evolved in mammals to regulate intrauterine growth and mammalian development. If the epigenotype of individual gametes is directly correlated with their later developmental capacities, genomic imprinting would have important practical implications in reproductive medicine for the use of embryos derived from assisted reproduction.  相似文献   

18.
Development induced deep anatomical changes and tissue composition alterations in the rat. To determine the extent of these changes, the organ weight and size of 19 and 21 day rat foetuses and of 1, 5, 10, 20 and 30 day old Wistar rat pups have been studied and compared with adults. Different tissues showed varying rates of cell and tissue growth as well as tissue cellularity during development. Tail length is not a good index of skeletal growth. Brain growth was much slower from late intrauterine life to adulthood than most other organs. Skin weight increased more than 3-fold between days 19 and 21 of intrauterine life. Striated muscle proportion to body weight remained practically constant throughout all postnatal life studied.  相似文献   

19.
This study was conducted to determine if Escherichia coli endotoxin was absorbed from the equine uterus and if exogenous progesterone and estrogen affected the absorption of intrauterine endotoxin. Six mature anestrous pony mares were used in three consecutive crossover experiments (Periods) with a 14 day recovery between each period. Mares were randomly assigned to one of two treatment groups (three mares per group) and received an intrauterine infusion of either saline or endotoxin. Treatment groups were reversed and readministered after 14 days completing a crossover design (Period 1). During Periods 2 and 3 the mares were treated with estradiol-17beta (4.0 mg/day) or progesterone (400 mg/day), respectively, for 5 days prior to receiving intrauterine infusions. On the day of intrauterine infusions rectal temperatures and jugular blood samples were obtained at 30 to 60 minute intervals. Blood samples were analyzed for total white blood cell counts and by Limulus Amebocyte Lysate Assays. There were no significant alterations in the observed parameters among the various treatment groups. These results indicated that intrauterine E. coli endotoxin was not absorbed from the uterus of anestrous pony mares in large enough amounts to produce a morbid condition and that prior exposure to exogenous progesterone or estradiol-17beta did not affect the absorption of endotoxin from the equine uterus.  相似文献   

20.
Sequence homology predicts that the extracellular domain of the sodium channel beta1 subunit forms an immunoglobulin (Ig) fold and functions as a cell adhesion molecule. We show here that beta1 subunits associate with neurofascin, a neuronal cell adhesion molecule that plays a key role in the assembly of nodes of Ranvier. The first Ig-like domain and second fibronectin type III-like domain of neurofascin mediate the interaction with the extracellular Ig-like domain of beta1, confirming the proposed function of this domain as a cell adhesion molecule. beta1 subunits localize to nodes of Ranvier with neurofascin in sciatic nerve axons, and beta1 and neurofascin are associated as early as postnatal day 5, during the period that nodes of Ranvier are forming. This association of beta1 subunit extracellular domains with neurofascin in developing axons may facilitate recruitment and concentration of sodium channel complexes at nodes of Ranvier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号