首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Met16Phe mutant of the type 1 copper protein pseudoazurin (PACu), in which a phenyl ring is introduced close to the imidazole moiety of the His81 ligand, has been characterized. NMR studies indicate that the introduced phenyl ring is parallel to the imidazole group of His81. The mutation has a subtle effect on the position of the two S(Cys)-->Cu(II) ligand-to-metal charge transfer bands in the visible spectrum of PACu(II) and a more significant influence on their intensities resulting in a A(459)/A(598) ratio of 0.31 for Met16Phe as compared to a A(453)/A(594) ratio of 0.43 for wild-type PACu(II) at pH 8. The electron paramagnetic resonance spectrum of the Met16Phe variant is more axial than that of the wild-type protein, and the resonance Raman spectrum of the mutant exhibits subtle differences. A C(gamma)H proton of Met86 exhibits a much smaller hyperfine shift in the paramagnetic (1)H NMR spectrum of Met16Phe PACu(II) as compared to its position in the wild-type protein, which indicates a weaker axial Cu-S(Met86) interaction in the mutant. The Met16Phe mutation results in an approximately 60 mV increase in the reduction potential of PACu. The pK(a) value of the ligand His81 decreases from 4.9 in wild-type PACu(I) to 4.5 in Met16Phe PACu(I) indicating that the pi-pi contact with Phe16 stabilizes the Cu-N(His81) interaction. The Met16Phe variant of PACu has a self-exchange rate constant at pH 7.6 (25 degrees C) of 9.8 x 10(3) M(-)(1) s(-)(1) as compared to the considerably smaller value of 3.7 x 10(3) M(-)(1) s(-)(1) for the wild-type protein under identical conditions. The enhanced electron transfer reactivity of Met16Phe PACu is a consequence of a lower reorganization energy due to additional active site rigidity caused by the pi-pi interaction between His81 and the introduced phenyl ring.  相似文献   

2.
Rat aldose reductase-like protein (AKR1B14) is the ortholog of mouse vas deferens protein (AKR1B7) playing roles in detoxification of reactive aldehydes and synthesis of prostaglandin F. The crystal structure of the binary complex (AKR1B14-NADPH) was determined at 1.86 Å resolution, and showed that the adenine ring and the 2′-phosphate group of the coenzyme formed π-stacking and electrostatic interactions with the imidazole ring and ND1 atom, respectively, of His269, which is not conserved in other aldose reductase-like proteins. The interactions were supported by site-directed mutagenesis of His269 to Arg, Phe and Met, which increased the Km for NADPH by 4, 7 and 127-fold, respectively. This is the first report of the tertiary structure of a rodent AKR1B7 ortholog, which describes the role of a novel dual interaction for the non-conserved His269 in coenzyme binding.  相似文献   

3.
There are frequent contacts between aromatic rings and sulfur atoms in proteins. However, it is unclear to what degree this putative interaction is stabilizing and what the nature of the interaction is. We have investigated the aryl-sulfur interaction by placing a methionine residue diagonal to an aromatic ring on the same face of a beta-hairpin, which places the methionine side chain in close proximity to the aryl side chain. The methionine (Met)-aryl interaction was compared with an equivalent hydrophobic and cation-pi interaction in the context of the beta-hairpin. The interaction between phenylalanine (Phe), tryptophan (Trp), or cyclohexylalanine (Cha) and Met stabilized the beta-hairpin by -0.3 to -0.5 kcal mole(-1), as determined by double-mutant cycles. The peptides were subjected to thermal denaturations that suggest a hydrophobic driving force for the interactions between Met and Trp or Cha. The observed interaction of Met or norleucine (Nle) with Trp or Cha are quite similar, implying a hydrophobic driving force for the Met-pi interaction. However, the thermodynamic data suggest that there may be some differences between the interaction of Met with Trp and Phe and that there may be a small thermodynamic component to the Met...Phe interaction.  相似文献   

4.
1H-NMR spectra for the angiotensin agonist sarcosine-(Sar)Arg-Val-Tyr-Ile-His-Sar-Phe [( Sar1,Sar7]Ang II) and the antagonist Sar-Arg-Val-Tyr-Ile-His-Sar-Ile in dimethylsulfoxide-d6 were examined at 400 MHz. Splitting of the resonances for Tyr, His, and Sar protons revealed that the His6-Sar7 peptide bond existed in both cis and trans forms, with one isomer predominating in the ratio 5:1 in both peptides. Comparison of the chemical shifts for the His6 and Phe8 ring protons in these peptides suggested a His/Phe stacking interaction in [Sar1,Sar7]Ang II which is important for agonist activity.  相似文献   

5.
Cyclo(His–Phe) was effectively converted to its dehydro derivatives by the enzyme of Streptomyces albulus KO-23, an albonoursin-producing actinomycete. Two types of dehydro derivatives were isolated from the reaction mixture and identified as cyclo(ΔHis–ΔPhe) and cyclo(His–ΔPhe). This is the first report on cyclo(His–ΔPhe) and the enzymatic preparation of both compounds. Cyclo(ΔHis–ΔPhe), a tetradehydro cyclic dipeptide, exhibited a minimum inhibitory concentration of 0.78 μmol/ml inhibitory activity toward the first cleavage of sea urchin embryos, in contrast to cyclo(His–ΔPhe) that had no activity. The finding that the isoprenylated derivative of cyclo(ΔHis–ΔPhe), dehydrophyenylahistin, had 2,000 times higher activity than cyclo(ΔHis–ΔPhe) indicates that an isoprenyl group attached to an imidazole ring of the compound was essential for the inhibitory activity.  相似文献   

6.
Nanosecond time-resolved tyrosinate fluorescence lifetimes were compared for oxytocin (OXT) and vasopressin (AVP) in propylene glycol. Long-lifetime tyrosinate fluorescence (LTF), characteristic of stable intramolecular hydrogen bond formation of the Tyr hydroxyl group, was present for OXT but not AVP in propylene glycol. The Tyr OH proton was also found to be labile for OXT but not AVP in DMSO by 1H-NMR. The spectroscopic data illustrate that the Tyr hydroxyl in OXT participates in an intramolecular hydrogen bond in certain receptor-simulating environments; the absence of potent LTF for [Ala5] OXT suggests that the Tyr hydroxyl of OXT forms an H-bond with the Asn5 carboxamide side-chain. The lability of the Tyr OH proton of OXT, but not AVP, is in accord with the biological activities of the peptides (OXT 100%, AVP 1%) in the rat uterus assay, suggesting that propylene glycol and DMSO mimic the environment at uterine receptors. 1H-NMR studies in DMSO demonstrate that for AVP there is a perpendicular-plate ring pairing interaction between the Tyr and Phe side-chains in which the hexagonal axis of the Tyr ring interacts with the face of the Phe ring. The present findings are discussed in terms of the proposed "cooperative model" for neurohypophysial hormone action.  相似文献   

7.
[Phe(F5)8]angiotensin II was synthesized by the solid phase method and purified by reverse-phase HPLC. In rat uterus and rabbit aorta bioassays the analogue had 10 and 50%, respectively, of the contractile activity of angiotensin II and demonstrated antagonist properties. These findings illustrate that inversion of the Phe8 ring quadrupole moment in angiotensin II decreases agonist activity and invokes antagonist properties. 1H-NMR studies at 400 MHz in DMSO-d6 demonstrated the presence of cis and trans isomers in the ratio 1:3 due to restricted rotation of the His-Pro bond. Downfield shifts of the His C2 and C4 protons in [Phe(F5)]ANG II compared to ANG II suggest that the Phe(F5) residue may be involved in a parallel-plate ring pairing interaction with the imidazole group. However heteronuclear NOE studies, carried out by measuring the proton difference spectrum before and after saturation of the fluorine resonances, showed the absence of any NOE enhancement illustrating that electrostatic influences of the Phe(F5) ring occur at relatively long range.  相似文献   

8.
Cation-pi interactions are common in proteins, but their contribution to the stability and specificity of protein structure has not been well established. In this study, we examined the impact of cation-pi interactions in a diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe or Trp with Lys or Arg. The diagonal interactions ranged from -0.20 to -0.48 kcal/mole. Our experimental values for the diagonal cation-pi interactions are similar to those found in alpha-helical studies. Upfield shifting of the Lys and Arg side chains indicates that the geometries of cation-pi interactions adopted in the 12-residue beta-hairpin are comparable to those found in protein structures. The Lys was found to interact through the polarized Cepsilon, and the Arg is stacked against the aromatic ring of Phe or Trp. Folding of these peptides was found to be enthalpically favorable (DeltaH degrees equals approximately -3 kcal/mole) and entropically unfavorable (DeltaS degrees equals approximately -8 cal mole(-1) K(-1)).  相似文献   

9.
Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-π pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-π interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 ? in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-π pairs are found throughout protein structures, in helices as well as β strands. Numerous pairs also had nearby cation-π interactions as well as potential π-π stacking. While more than 1000 structures did not contain an anion-π pair, the 3134 remaining structures contained approximately 2.6 anion-π pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.  相似文献   

10.
Side-chain interactions in the C-peptide helix: Phe 8 ... His 12+   总被引:7,自引:0,他引:7  
Previous studies have demonstrated that His 12 plays a major role in the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A). Here, amino acid replacement experiments show that His 12+ stabilizes the C-peptide helix chiefly by interacting with Phe 8. The Phe 8 ... His 12+ ring interaction is specific for the protonated form of His 12 (His 12+) and the interaction is not screened significantly by NaCl, unlike the charged group ... helix dipole interactions studied earlier in C-peptide. Analogs of C-peptide that are unable to form the Phe 8 ... His 12+ interaction show large increases in helix content for Phe----Ala and His----Ala. Therefore, the helical tendencies of the individual residues Phe, His, and Ala are important in determining the result of a replacement experiment. Since the side chains of Phe 8 and His 12 probably interact within the N-terminal helix of ribonuclease A, the existence of the Phe 8 ... His 12+ interaction in the isolated C-peptide helix adds to the evidence that the C-peptide helix is an autonomous folding unit.  相似文献   

11.
The steady-state and time-resolved fluorescence properties of two zinc-saturated 18-residue synthetic peptides with the amino acid sequence of the NH2-terminal (NCp7 13-30 F16W, where the naturally occurring Phe was replaced by a Trp residue) and the COOH-terminal (NCp7 34-51) zinc finger domains of human immunodeficiency virus type I nucleocapsid protein were investigated. Fluorescence intensity decay of both Trp 16 and Trp 37 residues suggested the existence of two fully solvent-exposed ground-state classes governed by a C = 2.2 equilibrium constant. The lifetimes of Trp 16 classes differed from those of Trp 37 essentially because of differences in nonradiative rate constants. Arrhenius plots of the temperature-dependent nonradiative rate constants suggested that the fluorescence quenchers involved in both classes and in both peptides were different and the collisional rate of these quenchers with the indole ring was very low, probably because of the highly constrained peptide chain conformation. The nature of the ground-state classes was discussed in relation to 1H nuclear magnetic resonance data. Using Trp fluorescence to monitor the interaction of both peptides with tRNA(Phe) we found that a stacking between the indole ring of both Trp residues and the bases of tRNA(Phe) occurred. This stacking constituted the main driving force of the interaction and modified the tRNA(Phe) conformation. Moreover, the binding of both fingers to tRNA(Phe) was noncooperative with similar site size (3 nucleotide residues/peptide), but the affinity of the NH2-terminal finger domain (K = 1.3 (+/- 0.2) 10(5) M-1) in low ionic strength buffer was one order of magnitude larger than the COOH-terminal one due to additional electrostatic interactions involving Lys 14 and/or Arg 29 residues.  相似文献   

12.
Interactions between hydrophobic side chains within alpha-helices.   总被引:3,自引:3,他引:0       下载免费PDF全文
The thermodynamic basis of helix stability in peptides and proteins is a topic of considerable interest. Accordingly, we have computed the interactions between side chains of all hydrophobic residue pairs and selected triples in a model helix, using Boltzmann-weighted exhaustive modeling. Specifically, all possible pairs from the set Ala, Cys, His, Ile, Leu, Met, Phe, Trp, Tyr, and Val were modeled at spacings of (i, i + 2), (i, i + 3), and (i, i + 4) in the central turn of a model poly-alanyl alpha-helix. Significant interactions--both stabilizing and destabilizing-- were found to occur at spacings of (i, i + 3) and (i, i + 4), particularly in side chains with rings (i.e., Phe, Tyr, Trp, and His). In addition, modeling of leucine triples in a helix showed that the free energy can exceed the sum of pairwise interactions in certain cases. Our calculated interaction values both rationalize recent experimental data and provide previously unavailable estimates of the constituent energies and entropies of interaction.  相似文献   

13.
In the ligand/receptor interaction, the side chain phenyl group of phenylalanine (Phe) is involved in a so-called hydrophobic interaction, in which the Phe-phenyl group functions as a p element or merely as a hydrophobic element. The thrombin receptor-tethered ligand SFLLRNP consists of the Phe-2 residue essential for receptor activation. In order to explore the molecular characteristics of this Phe-2-phenyl group, a complete set of S/Phe/LLRNP peptides comprising six different difluorophenylalanine isomers [(F(2))Phe] was newly synthesized and assayed to evaluate their ability to induce the aggregation of human platelets. The assay results clarified several important structural elements to conclude that Phe-2-phenyl of S/Phe/LLRNP is in the edge-to-face CH/pi interaction with the receptor aromatic group, utilizing the Phe-phenyl edge along with adjacent benzene hydrogens at positions (2-3) or (5-6). It was also found that the fluorine atom at position 4 increases the acidity of the hydrogen mainly at its ortho position, resulting in a reinforcement of the CH/pi interaction and thus in an enhancement of biological activity. The H-->F replacement in the benzene ring was found to provide an effective structural examination to the Phe residue; i.e., to identify the hydrogens in the CH/pi interaction, and to strengthen the CH/pi interaction.  相似文献   

14.
The contribution of interactions involving the imidazole ring of His41 to the pH-dependent stability of the villin headpiece (HP67) N-terminal subdomain has been investigated by nuclear magnetic resonance (NMR) spin relaxation. NMR-derived backbone N-H order parameters (S2) for wild-type (WT) HP67 and H41Y HP67 indicate that reduced conformational flexibility of the N-terminal subdomain in WT HP67 is due to intramolecular interactions with the His41 imidazole ring. These interactions, together with desolvation effects, contribute to significantly depress the pKa of the buried imidazole ring in the native state. 15N R1rho relaxation dispersion data indicate that WT HP67 populates a partially folded intermediate state that is 10.9 kJ mol(-1) higher in free energy than the native state under non-denaturing conditions at neutral pH. The partially folded intermediate is characterized as having an unfolded N-terminal subdomain while the C-terminal subdomain retains a native-like fold. Although the majority of the residues in the N-terminal subdomain sample a random-coil distribution of conformations, deviations of backbone amide 1H and 15N chemical shifts from canonical random-coil values for residues within 5A of the His41 imidazole ring indicate that a significant degree of residual structure is maintained in the partially folded ensemble. The pH-dependence of exchange broadening is consistent with a linear three-state exchange model whereby unfolding of the N-terminal subdomain is coupled to titration of His41 in the partially folded intermediate with a pKa,I=5.69+/-0.07. Although maintenance of residual interactions with the imidazole ring in the unfolded N-terminal subdomain appears to reduce pKa,I compared to model histidine compounds, protonation of His41 disrupts these interactions and reduces the difference in free energy between the native state and partially folded intermediate under acidic conditions. In addition, chemical shift changes for residues Lys70-Phe76 in the C-terminal subdomain suggest that the HP67 actin binding site is disrupted upon unfolding of the N-terminal subdomain, providing a potential mechanism for regulating the villin-dependent bundling of actin filaments.  相似文献   

15.
Cody V  Pace J  Chisum K  Rosowsky A 《Proteins》2006,65(4):959-969
Structural data are reported for two highly potent antifolates, 2,4-diamino-5-[3',4'-dimethoxy-5'-(5-carboxy-1-pentynyl)]benzylpyrimidine (PY1011), with 5000-fold selectivity for Pneumocystis carinii dihydrofolate reductase (pcDHFR), relative to rat liver DHFR, and 2,4-diamino-5-[2-methoxy-5-(4-carboxybutyloxy)benzyl]pyrimidine (PY957), that has 80-fold selectivity for pcDHFR. Crystal structures are reported for NADPH ternary complexes with PY957 and pcDHFR, refined to 2.2 A resolution; with PY1011 and pcDHFR, refined to 2.0 A resolution; and with PY1011 and mouse DHFR (mDHFR), refined to 2.2 A resolution. These results reveal that the carboxylate of the omega-carboxyalkyloxy side chain of these inhibitors form ionic interactions with the conserved Arg in the substrate binding pocket of DHFR. These data suggest that the enhanced inhibitory activity of PY1011 compared with PY957 is, in part, due to the favorable contacts with Phe69 of pcDHFR by the methylene carbons of the inhibitor side chain that are oriented by the triple bond of the 1-pentynyl side chain. These contacts are not present in the PY957 pcDHFR complex, or in the PY1011 mDHFR complex. In the structure of mDHFR the site of Phe69 in pcDHFR is occupied by Asn64. These data also revealed a preference for an unusual parallel ring stacking interaction between Tyr35 of the active site helix and Phe199 of the C-terminal beta sheet in pcDHFR and by Tyr33 and Phe179 in mDHFR that is independent of bound ligand. A unique His174-His187 parallel ring stacking interaction was also observed only in the structure of pcDHFR. These ring stacking interactions are rarely found in any other protein families and may serve to enhance protein stability.  相似文献   

16.
Organophosphorus compounds (OPs) interfere with the catalytic mechanism of acetylcholinesterase (AChE) by rapidly phosphorylating the catalytic serine residue. The inhibited enzyme can at least partly be reactivated with nucleophilic reactivators such as oximes. The covalently attached OP conjugate may undergo further intramolecular dealkylation or deamidation reactions, a process termed "aging" that results in an enzyme considered completely resistant to reactivation. Of particular interest is the inhibition and aging reaction of the OP compound tabun since tabun conjugates display an extraordinary resistance toward most reactivators of today. To investigate the structural basis for this resistance, we determined the crystal structures of Mus musculus AChE (mAChE) inhibited by tabun prior to and after the aging reaction. The nonaged tabun conjugate induces a structural change of the side chain of His447 that uncouples the catalytic triad and positions the imidazole ring of His447 in a conformation where it may form a hydrogen bond to a water molecule. Moreover, an unexpected displacement of the side chain of Phe338 narrows the active site gorge. In the crystal structure of the aged tabun conjugate, the side chains of His447 and Phe338 are reversed to the conformation found in the apo structure of mAChE. A hydrogen bond between the imidazole ring of His447 and the ethoxy oxygen of the aged tabun conjugate stabilizes the side chain of His447. The displacement of the side chain of Phe338 into the active site gorge of the nonaged tabun conjugate may interfere with the accessibility of reactivators and thereby contribute to the high resistance of tabun conjugates toward reactivation.  相似文献   

17.
Nandel FS  Khare B 《Biopolymers》2005,77(1):63-73
Conformational studies of the peptides constructed from achiral amino acid residues Aib and Delta(Z)Phe (I) Ac-Aib-Delta(Z)Phe-NHMe (II), and Ac-(Aib-Delta(Z)Phe)(3)-NHMe; peptides III-VI having L-Leu or D-Leu at either the N- or the C-terminal position and of peptides VII-X having Leu residues in different enantiomeric combinations at both the N- and the C-terminal positions in peptide II have been studied to design the peptide with the required helical sense. Peptide II, as expected, adopts degenerate left- and right-handed helical structures. It has been shown that the peptides IV and VI having D-Leu at either the N or the C terminus can be realized in the right-handed helical structure with the phi,psi values of -20 degrees and -60 degrees for the Aib/Delta(Z)Phe residues. L-Leu and D- Leu at both the terminals in peptides VII and VIII, respectively, have hardly any effect as both the left- and the right-handed structures are found to be degenerate. Peptides III and IX can be realized in right- and left-handed helical structures, respectively, in solvents of low polarity whereas peptides V and X are predicted to be in the right-handed helical structures stabilized by carbonyl-carbonyl interactions without the formation of hydrogen bonds. The conformational states with the phi,psi values of 0 degrees and -85 degrees in peptide V are characterized by rise per residue of 2.03 A, rotation per residue of 117.5 degrees , and 3.06 residues per turn. In all peptides having Leu residue at the N terminus, the methyl moiety of the acetyl group is involved in the CH/pi interactions with the Cepsilon--Cdelta edge of the aromatic ring of Delta(Z)Phe (3) and the amino group NH of Delta(Z)Phe is involved in the NH/pi interactions with its own aromatic ring. The CH(3) groups of the Aib residues are also involved in CH/pi interactions with the i + 1th and i + 3th Delta(Z)Phe's aromatic side chains.  相似文献   

18.
Conformational free energy calculations using an empirical potential ECEPP/3 (Empirical Conformational Energy Program for Peptides, Version 3) were carried out on angiotensin II (AII) of sequence Asp-Arg-Val-Tyr-Ile-His-Pro-Phe to find the stable conformations of the free state in the unhydrated and the hydrated states. A conformational analysis of the unhydrated state was carried out using the buildup procedure. The free energy calculation using the hydration shell model was also carried out to obtain the stable conformation of the hydrated state. The calculated stable conformations of AII in both states have a partially right-handed α-helical structure stabilized by short- and medium-range interactions. The similarity between the lowest free energy conformations of the unhydrated and hydrated states suggests that the hydration might not be important to stabilize the overall conformation of AII in a free state. The absence of any intramolecular interaction of the Tyr side chain suggests the possible interaction of this residue with the receptor. In this study, we found that the low free energy conformations contain both the parallel-plate and the perpendicular-plate geometries of the His and Phe rings, suggesting the coexistence of both conformations. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
In this study, we investigated the extent to which different aromatic and positively charged side chains, which often flank transmembrane segments of proteins, can influence lipid-peptide interactions. Model systems consisting of phosphatidylcholine and hydrophobic alpha-helical peptides with different flanking residues were investigated. The peptides were incorporated in relatively thick and in relatively thin lipid bilayers to create a peptide-bilayer hydrophobic mismatch, and the compensating effects on lipid structure were analyzed. When relatively long with respect to the thickness of the bilayer, the peptides that are flanked by the aromatic side chains, Trp, Tyr, and Phe, all induce a significant ordering of the lipid acyl chains, while the peptides flanked by the charged residues Lys, Arg, and His do not. However, when the peptides are relatively short with respect to the thickness of the bilayer, their effect on lipid organization does not depend primarily on their aromatic or charged character. Peptides flanked by Trp, Tyr, Lys, or (at low pH) His residues are effective in inducing mismatch-relieving cubic and inverted hexagonal phases, while analogues flanked by Phe, Arg, or (at neutral pH) His residues cannot induce an inverted hexagonal phase. The different responses to mismatch might reflect the different interfacial affinities of the residues that were investigated.  相似文献   

20.
M Paci  C Gualerzi 《Biochemistry》1986,25(10):2765-2769
The quaternary interactions of Escherichia coli DNA binding proteins NS1, NS2, and NS (NS1 + NS2) have been studied by 1H NMR spectroscopy at 400 MHz following the reversible spectral changes produced by temperature increases on the resonances (Phe ring and His C-2 protons) whose spectral characteristics reflect the formation and dissociation of either homologous or heterologous interactions. These changes include (a) a progressive intensity decrease of the Phe resonances shifted to high field by stacking interactions, (b) a progressive intensity increase of the resonances due to freely rotating Phe, and (c) splitting of the His C-2 proton resonance. The association constants and thermodynamic parameters for the homologous and heterologous interactions were calculated from the molar fractions of the relevant molecular species by assuming that the above effects are due to the existence of simple association equilibria. It was found that two (out of three) phenylalanine residues of each polypeptide chain are involved in quaternary interactions. Quantitative data concerning the internal mobility and mutual orientations in aggregates of these Phe rings were also obtained. From the calculated association constants, from comparison of these data with recent protein-protein cross-linking results [Losso, M. A., Pawlik, R. T., Canonaco, M. A., & Gualerzi, C. O. (1986) Eur. J. Biochem. 155, 27-32], and from other considerations, we suggest that even though stacking of the Phe rings occurs at the interface between monomers, the temperature-dependent alteration of the Phe spectrum monitors shifts of the dimer in equilibrium tetramer equilibrium whereas the splitting of the His C-2 proton resonance most likely monitors the equilibrium between tetramers and larger aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号