首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Phylogeography of Rice yellow mottle virus (RYMV) was reconstructed from the coat protein gene sequences of a selection of 173 isolates from the 14 countries of mainland Africa where the disease occurred and from the full sequences of 16 representative isolates. Genetic variation was linked to geographical distribution and not to host species as isolates from wild rice always clustered with isolates from cultivated rice of the same region. Genetic variation was not associated to agro-ecology, viral interference and insect vector species. Distinct RYMV lineages occurred in East, Central and West Africa, although the Central African lineage included isolates from Benin, Togo and Niger at the west, adjacent to countries of the West African lineage. Genetic subdivision at finer geographical scales was apparent within lineages of Central and West Africa, although less pronounced than in East Africa. Physical obstacles, but also habitat fragmentation, as exemplified by the small low-lying island of Pemba offshore Tanzania mainland, explained strain localization. Three new highly divergent strains were found in eastern Tanzania. By contrast, intensive surveys in Cote d'Ivoire and Guinea at the west of Africa did not reveal any new variant. Altogether, this supported the view that the Eastern Arc Mountains biodiversity hotspot was the centre of origin of RYMV and that the virus spread subsequently from east to west across Africa. In West Africa, specific strains occurred in the Inner Niger Delta and suggested it was a secondary centre of diversification. Processes for diversification and dispersion of RYMV are proposed.  相似文献   

2.
It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe).  相似文献   

3.
Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.  相似文献   

4.
Dengue virus and its four serotypes (DENV-1 to DENV-4) infect 390 million people and are implicated in at least 25,000 deaths annually, with the largest disease burden in tropical and subtropical regions. We investigated the spatial dynamics of DENV-1, DENV-2 and DENV-3 in Brazil by applying a statistical framework to complete genome sequences. For all three serotypes, we estimated that the introduction of new lineages occurred within 7 to 10-year intervals. New lineages were most likely to be imported from the Caribbean region to the North and Northeast regions of Brazil, and then to disperse at a rate of approximately 0.5 km/day. Joint statistical analysis of evolutionary, epidemiological and ecological data indicates that aerial transportation of humans and/or vector mosquitoes, rather than Aedes aegypti infestation rates or geographical distances, determine dengue virus spread in Brazil.  相似文献   

5.
Many East African mountains are characterized by an exceptionally high biodiversity. Here we assess the hypothesis that climatic fluctuations during the Plio-Pleistocene led to ecological fragmentation with subsequent genetic isolation and speciation in forest habitats in East Africa. Hypotheses on speciation in savannah lineages are also investigated. To do this, mitochondrial DNA sequences from a group of bush crickets consisting of both forest and savannah inhabiting taxa were analysed in relation to Plio-Pleistocene range fragmentations indicated by palaeoclimatic studies. Coalescent modelling and mismatch distributions were used to distinguish between alternative biogeographical scenarios. The results indicate two radiations: the earliest one overlaps in time with the global spread of C4 grasslands and only grassland inhabiting lineages originated in this radiation. Climatically induced retraction of forest to higher altitudes about 0.8 million years ago, promoting vicariant speciation in species inhabiting the montane zone, can explain the second radiation. Although much of the biodiversity in East Africa is presently threatened by climate change, past climatic fluctuations appear to have contributed to the species richness observed in the East African hot spots. Perceiving forests as centres of speciation reinforces the importance of conserving the remaining forest patches in the region.  相似文献   

6.
Maize lethal necrosis disease (MLND) is a devastating viral disease of maize caused by double infection with Maize chlorotic mottle virus (MCMV) and any one of the Potyviridae family members. Management of MLND requires effective resistance screening and surveillance tools. In this study, we report the use of small RNA (sRNA) profiling to detect MLND causal viruses and further the development of alternative detection markers for use in routine surveillance of the disease-causing viruses. Small RNAs (sRNAs) originating from five viruses namely MCMV, Sugarcane mosaic virus (SCMV), Maize streak virus (MSV), Maize-associated totivirus (MATV) and Maize yellow mosaic virus (MYMV) were assembled from infected maize samples collected from MLND hot spots in Kenya. The expression of the identified viral domains was further validated using quantitative real-time PCR. New markers for the detection of some of the MLND causal viruses were also developed from the highly expressed domains and used to detect the MLND-causative viruses in maize and alternative hosts. These findings further demonstrate the potential of using sRNAs especially from highly expressed viral motifs in the detection of MLND causal viruses. We report the validation of new sets of primers for use in detection of the most common MLND causal viruses MCMV and SCMV in East Africa.  相似文献   

7.
Wave-like spread of Ebola Zaire   总被引:1,自引:1,他引:0  
Walsh PD  Biek R  Real LA 《PLoS biology》2005,3(11):e371
In the past decade the Zaire strain of Ebola virus (ZEBOV) has emerged repeatedly into human populations in central Africa and caused massive die-offs of gorillas and chimpanzees. We tested the view that emergence events are independent and caused by ZEBOV variants that have been long resident at each locality. Phylogenetic analyses place the earliest known outbreak at Yambuku, Democratic Republic of Congo, very near to the root of the ZEBOV tree, suggesting that viruses causing all other known outbreaks evolved from a Yambuku-like virus after 1976. The tendency for earlier outbreaks to be directly ancestral to later outbreaks suggests that outbreaks are epidemiologically linked and may have occurred at the front of an advancing wave. While the ladder-like phylogenetic structure could also bear the signature of positive selection, our statistical power is too weak to reach a conclusion in this regard. Distances among outbreaks indicate a spread rate of about 50 km per year that remains consistent across spatial scales. Viral evolution is clocklike, and sequences show a high level of small-scale spatial structure. Genetic similarity decays with distance at roughly the same rate at all spatial scales. Our analyses suggest that ZEBOV has recently spread across the region rather than being long persistent at each outbreak locality. Controlling the impact of Ebola on wild apes and human populations may be more feasible than previously recognized.  相似文献   

8.
Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003-2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments.  相似文献   

9.
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV‐A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non‐maize‐adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3–10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV‐A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV‐B to MSV‐K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single‐component, circular, single‐stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38‐nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32‐kDa capsid protein. Particles are generally stable in buffers of pH 4–8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak‐resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv‐1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small‐effect resistance genes together with msv‐1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈 http://www.mcb.uct.ac.za/MSV/mastrevirus.htm 〉; 〈 http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm 〉.  相似文献   

10.
Tolerance to maize streak virus (MSV) was found and rapidly incorporated into high yielding maize populations for the tropics. Methods were developed for vector propagation and rapid accurate screening of many accessions for virus tolerance in large screenhouses. Tolerance was found in only two accessions and at low frequencies. Further refinements enabled field evaluation for virus tolerance to be combined with high agronomic performance. The tolerance found is simply inherited and was fixed rapidly in breeding. Non-strain specific tolerance was sought by collecting vectors and different indigenous host grasses from a wide area. The tolerance developed was sufficiently high hardly to affect yield of infected plants. It provided epidemiological or field resistance by reducing disease incidence to insignificance under natural conditions. This tolerance and field resistance has proved effective in several countries of East, West and southern Africa. Varieties derived from this work are now being promoted in Nigeria, and they have potential application elsewhere in the lowland tropics.  相似文献   

11.
Many of the macroevolutionary processes that have shaped present-day phylogenetic patterns were caused by geological events such as plate tectonics and temporary land-bridges. The study of spatial patterns of phylogenetic diversity can provide insights into these past events. Here we focus on a western Mediterranean biodiversity hotspot located in the southern Iberian Peninsula and northwest Africa, two regions that are separated by the Strait of Gibraltar. We explore the spatial structure of the phylogenetic relationships within and across large-scale plant assemblages. Significant turnover in terminal lineages tends to occur between landmasses, whereas turnover in deep lineages tends to occur within landmasses. Plant assemblages in the western ecoregions of this hotspot tend to be phylogenetically overdispersed but are phylogenetically clustered on its eastern margins. We discuss our results in the light of potential scenarios of niche evolution (or conservatism) and lineage diversification. The significant turnover between landmasses suggests a common scenario of allopatric speciation that could have been facilitated by the intermittent joining of the two continents. This may have constituted an important stimulus for diversification and the emergence of this western Mediterranean biodiversity hotspot.  相似文献   

12.
Climate change and the recent emergence of bluetongue in Europe   总被引:1,自引:0,他引:1  
Bluetongue, a devastating disease of ruminants, has historically made only brief, sporadic incursions into the fringes of Europe. However, since 1998, six strains of bluetongue virus have spread across 12 countries and 800 km further north in Europe than has previously been reported. We suggest that this spread has been driven by recent changes in European climate that have allowed increased virus persistence during winter, the northward expansion of Culicoides imicola, the main bluetongue virus vector, and, beyond this vector's range, transmission by indigenous European Culicoides species - thereby expanding the risk of transmission over larger geographical regions. Understanding this sequence of events may help us predict the emergence of other vector-borne pathogens.  相似文献   

13.
Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) is used as a classical biological control agent against Chilo partellus (Swinhoe) (Lepidoptera: Crambidae), a serious exotic pest of cereal crops in eastern and southern Africa. This parasitoid has been introduced into several African countries for the control of C. partellus in maize, Zea mays L., and sorghum, Sorghum bicolor (L.), but it has never been released in Ethiopia. It is hypothesized that it spread into Ethiopia from populations released in Kenya and Somalia to become the predominant parasitoid of C. partellus in maize and sorghum fields of the country. In recent surveys conducted in Ethiopia, C. flavipes was recovered from C. partellus in sugarcane, Saccharum L. spp. hybrids, at a site >2,000 km from the nearest known release sites in Kenya and Somalia. These findings question published hypotheses that estimate the dispersal rate of C. flavipes to be 60 km per year in Africa, and they suggest that since its release in Africa this parasitoid has developed strains adapted to searching particular host plants infested by particular stem borers. The anomalies between our results and previous reports evoked the hypothesis that C. flavipes in Ethiopian sugarcane might be a different strain. To test this hypothesis, we compared partial COI gene sequences of C. flavipes collected from sugarcane in Ethiopia and those of specimens from other African countries to determine the origin of the Ethiopian population. In addition, COI sequences were obtained for C. flavipes from other continents. The C. flavipes population established in Ethiopian sugarcane is most closely related to the populations released against C. partellus in maize in other parts of Africa, which were derived from the original population imported from Pakistan. The dispersal rate of the parasitoid was estimated to be >200 km per year.  相似文献   

14.
A major unanswered question regarding the dispersal of modern humans around the world concerns the geographical site of the first human steps outside of Africa. The "southern coastal route" model predicts that the early stages of the dispersal took place when people crossed the Red Sea to southern Arabia, but genetic evidence has hitherto been tenuous. We have addressed this question by analyzing the three minor west-Eurasian haplogroups, N1, N2, and X. These lineages branch directly from the first non-African founder node, the root of haplogroup N, and coalesce to the time of the first successful movement of modern humans out of Africa, ~60 thousand years (ka) ago. We sequenced complete mtDNA genomes from 85 Southwest Asian samples carrying these haplogroups and compared them with a database of 300 European examples. The results show that these minor haplogroups have a relict distribution that suggests an ancient ancestry within the Arabian Peninsula, and they most likely spread from the Gulf Oasis region toward the Near East and Europe during the pluvial period 55-24 ka ago. This pattern suggests that Arabia was indeed the first staging post in the spread of modern humans around the world.  相似文献   

15.
Martinique is an environmentally heterogeneous island with a complex geological history. It is occupied by a solitary anole, Anolis roquet, showing marked geographical variation in colour and other features. Phylogenetic analysis of a segment (1 kb) of the mitochondrial cytochrome b gene across the Anolis roquet series in the southern Lesser Antilles and at 63 localities of Anolis roquet in Martinique indicate that A. roquet is paraphyletic as A. extremus (Barbados) is nested within the Martinique populations. Moreover, divergent phylogenetic lineages exist within Martinique (max. 10.6% uncorrected pairwise), and these lineages are closely associated with the geological history of this complex island. However, objective quantification of the spectroradiometric analysis of hue by delta analysis, together with analysis of the colour pattern, indicate that they are primarily determined by adaptation to environmental conditions, irrespective of these phylogenetic lineages. There is remarkable convergence in hue and pattern in both extreme xeric (dark chevrons on a dull, generally grey/brown, background), and montane conditions (black reticulation and non-UV white spots on a bright, saturated green background). Moreover, parallel trends occur between Martinique and other Lesser Antillean anoles, which further argues for adaptation (increase in green saturation in montane areas and higher levels of UV on the dewlap of some Atlantic forms). As an exception, there are two specific situations where anoles from different lineages look different. These are (i). in the low-altitude regions of the northwest where the northwestern and central lineages make contact, and (ii). in the far south of the island where the southern and central lineages meet.  相似文献   

16.
The last Pleistocene deglaciation shaped temperate and boreal communities in North America. Rapid northward expansion into high latitudes created distinctive spatial genetic patterns within species that include closely related groups of populations that are now widely spread across latitudes, while longitudinally adjacent populations, especially those near the southern periphery, often are distinctive due to long‐term disjunction. Across a spatial expanse that includes both recently colonized and long‐occupied regions, we analysed molecular variation in zapodid rodents to explore how past climate shifts influenced diversification in this group. By combining molecular analyses with species distribution modelling and tests of ecological interchangeability, we show that the lineage including the Preble's meadow jumping mouse (Zapus hudsonius preblei), a US federally listed taxon of conservation concern, is not restricted to the southern Rocky Mountains. Rather, populations along the Front Range are part of a single lineage that is ecologically indistinct and extends to the far north. Of the 21 lineages identified, this Northern lineage has the largest geographical range and low measures of intralineage genetic differentiation, consistent with recent northward expansion. Comprehensive sampling combined with coalescent‐based analyses and niche modelling leads to a radically different view of geographical structure within jumping mice and indicates the need to re‐evaluate their taxonomy and management. This analysis highlights a premise in conservation biology that biogeographical history should play a central role in establishing conservation priorities.  相似文献   

17.
Despite its wide spread and high prevalence in sub-Saharan Africa, hepatitis B virus genotype E (HBV/E) has a surprisingly low genetic diversity, indicating an only recent emergence of this genotype in the general African population. Here, we performed extensive phylogeographic analyses, including Bayesian MCMC modeling. Our results indicate a mutation rate of 1.9×10−4 substitutions per site and year (s/s/y) and confirm a recent emergence of HBV/E, most likely within the last 130 years, and only after the transatlantic slave-trade had come to an end. Our analyses suggest that HBV/E originated from the area of Nigeria, before rapidly spreading throughout sub-Saharan Africa. Interestingly, viral strains found in Haiti seem to be the result of multiple introductions only in the second half of the 20th century, corroborating an absence of a significant number of HBV/E strains in West Africa several centuries ago. Our results confirm that the hyperendemicity of HBV(E) in today''s Africa is a recent phenomenon and likely the result of dramatic changes in the routes of viral transmission in a relatively recent past.  相似文献   

18.
The aim of this study was to characterize environmental differentiation of lineages within Rhabdomys and provide hypotheses regarding potential areas of contact between them in the Southern African subregion, including the Republic of South Africa, Lesotho, and Namibia. Records of Rhabdomys taxa across the study region were compiled and georeferenced from the literature, museum records, and field expeditions. Presence records were summarized within a 10 × 10 km grid covering the study area. Environmental information regarding climate, topography, land use, and vegetation productivity was gathered at the same resolution. Multivariate statistics were used to characterize the current environmental niche and distribution of the whole genus as well as of three mitochondrial lineages known to occur in southern Africa. Distribution modeling was carried out using MAXENT in order to generate hypotheses regarding current distribution of each taxa and their potential contact zones. Results indicate that the two species within Rhabdomys appear to have differentiated across the precipitation/temperature gradient present in the region from east to west. R. dilectus occupies the wettest areas in eastern southern Africa, while R. pumilio occupies the warmer and drier regions in the west, but also penetrates in the more mesic central part of the region. We provide further evidence of environmental differentiation within two lineages of R. dilectus. Contact zones between lineages appear to occur in areas of strong environmental gradients and topographic complexity, such as the transition zones between major biomes and the escarpment area where a sharp altitudinal gradient separates coastal and plateau areas, but also within more homogeneous areas such as within grassland and savannah biomes. Our results indicate that Rhabdomys may be more specialized than previously thought when considering current knowledge regarding mitochondrial lineages. The genus appears to have differentiated along two major environmental axes in the study region, but results also suggest dispersal limitations and biological interactions having a role in limiting current distribution boundaries. Furthermore, the projection of the potential geographic distribution of the different lineages suggests several contact zones that may be interesting study fields for understanding the interplay between ecological and evolutionary processes during speciation.  相似文献   

19.
The invasive larger grain borer Prostephanus truncatus (Horn) is the most important pest of farm-stored maize in Africa. It was introduced into the continent from Mesoamerica in the late 1970s and by 2008 had spread to at least 18 countries. Classical biological control using two populations of the predator Teretrius nigrescens Lewis achieved long-term and cost effective control in warm-humid areas, but not in cool and hot-dry zones. The present study investigated the phylogenetic relationships between geographical populations of the predator. Ten populations of T. nigrescens were studied using randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR), sequence analysis of mitochondrial Cytochrme oxydase 1 (mtCOI) gene and ribosomal internally transcribed spacers (ITS) 1, 5.8S and ITS2. The mtCOI variation revealed two clades associated with geographical regions in Central America. It also reveals a significant isolation by distance between populations and considerable genetic shifts in laboratory rearing. RAPD-PCR did not reveal any potential SCAR diagnostic markers. The ITS variation mainly involved insertions and deletions of simple sequence repeats even within individuals. This study reveals the existence of two different mitochondrial lineages of the predator, associated with the geographical origin of populations distinguishable by fixed mutations on the mtCOI gene. The populations of T. nigrescens released in Africa belonged to two different clades from Meso America, namely south (released in West Africa) and north (released in eastern Africa). However, more polymorphic markers are required to clarify the observations in demographic time scales.  相似文献   

20.
The phylogeography of three species of African bovids, the hartebeest (Alcelaphus buselaphus), the topi (Damaliscus lunatus), and the wildebeest (Connochaetes taurinus), is inferred from sequence variation of 345 sequences at the control region (d-loop) of the mtDNA. The three species are closely related (tribe Alcelaphini) and share similar habitat requirements. Moreover, their former distribution extended over Africa, as a probable result of the expansion of open grassland on the continent during the last 2.5 Myr. A combination of population genetics (diversity and structure) and intraspecific phylogeny (tree topology and relative branch length) methods is used to substantiate scenarios of the species history. Population dynamics are inferred from the distribution of sequence pairwise differences within populations. In the three species, there is a significant structuring of the populations, as shown by analysis of molecular variance (AMOVA) pairwise and hierarchical differentiation estimations. In the wildebeest, a pattern of colonization from southern Africa toward east Africa is consistent with the asymmetric topology of the gene tree, showing a paraphyletic position of southern lineages, as well as their relatively longer branch lengths, and is supported by a progressive decline in population nucleotide diversity toward east Africa. The phylogenetic pattern found in the topi and the hartebeest differs from that of the wildebeest: lineages split into monophyletic clades, and no geographical trend is detected in population diversity. We suggest a scenario where these antelopes, previously with wide pan-African distributions, became extinct except in a few refugia. The hartebeest, and probably also the topi, survived in refugia north of the equator, in the east and the west, respectively, as well as one in the south. The southern refugium furthermore seems to have been the only place where the wildebeest has survived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号