首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics.  相似文献   

2.
The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.  相似文献   

3.
4.
5.
Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.  相似文献   

6.
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses.  相似文献   

7.
The innate immune system, in particular the type I interferon (IFN) response, is a powerful defence against virus infections. In turn, many if not all viruses have evolved various means to circumvent, resist, or counteract this host response to ensure efficient replication and propagation. Influenza viruses are no exception to this rule, and several viral proteins have been described to possess IFN‐antagonistic functions. Although the viral nonstructural protein 1 appears to be a major antagonist in influenza A and B viruses (IAV and IBV), we have previously shown that a specific motif in the IAV polymerase proteins exerts an IFN‐suppressive function very early in infection. The question remained whether a similar function would also exist in IBV polymerases. Here, we show that indeed a specific amino acid position (A523) of the PB1 protein in the IBV polymerase complex confers IFN‐antagonistic properties. Mutation of this position leads to enhanced activation of the IFN‐mediated signalling pathway after infection and subsequent reduction of virus titres. This indicates that inhibition of innate immune responses is a conserved activity shared by polymerase proteins of IAV and IBV.  相似文献   

8.
9.
Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.  相似文献   

10.
11.
Reassortment is an important driving force for influenza virus evolution, and a better understanding of the factors that affect this process could improve our ability to respond to future influenza pandemics and epidemics. To identify factors that restrict the generation of reassortant viruses, we cotransfected human embryonic kidney cells with plasmids for the synthesis of viral RNAs of both A/equine/Prague/1/56 (Prague; H7N7) and A/Yokohama/2017/03 (Yokohama; H3N2) viruses together with the supporting protein expression plasmids. Of the possible 256 genotypes, we identified 29 genotypes in 120 randomly plaque-picked reassortants examined. Analyses of these reassortants suggested that the formation of functional ribonucleoprotein (RNP) complexes was a restricting factor, a finding that correlated with the activities of RNP complexes composed of different combinations of the proteins from the two viruses, as measured in a minigenome assay. For at least one nonfunctional RNP complex (i.e., Prague PB2, Prague PB1, Yokohama PA, and Prague NP), the lack of activity was due to the inability of the three polymerase subunit proteins to form a heterotrimer. Adaptation of viruses possessing a gene encoding a chimera of the PA proteins of the two viruses and the remaining genes from Prague virus resulted in compensatory mutations in the PB2 and/or PA protein. These results indicate substantial incompatibility among the gene products of the two test viruses, a critical role for the RNP complex in the generation of reassortant viruses, and a functional interaction of PB2 and PA.  相似文献   

12.
Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3′ end of a guanine (G) base in RNA. The G specificity is exhibited by the native influenza polymerase complex associated with viral ribonucleoprotein particles and is conferred by an intrinsic G specificity of the isolated PA endonuclease domain PA-Nter. In addition, RNA cleavage site choice by the full polymerase is also guided by cap binding to the PB2 subunit, from which RNA cleavage preferentially occurs at the 12th nt downstream of the cap. However, if a G residue is present in the region of 10–13 nucleotides from the cap, cleavage preferentially occurs at G. This is the first biochemical evidence of influenza polymerase PA showing intrinsic sequence selective endonuclease activity.  相似文献   

13.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

14.
15.
We previously reported that influenza A/swine/Korea/1204/2009(H1N2) virus was virulent and transmissible in ferrets in which the respiratory-droplet-transmissible virus (CT-Sw/1204) had acquired simultaneous hemagglutinin (HAD225G) and neuraminidase (NAS315N) mutations. Incorporating these mutations into the nonpathogenic A/swine/Korea/1130/2009(H1N2, Sw/1130) virus consequently altered pathogenicity and growth in animal models but could not establish efficient transmission or noticeable disease. We therefore exploited various reassortants of these two viruses to better understand and identify other viral factors responsible for pathogenicity, transmissibility, or both. We found that possession of the CT-Sw/1204 tripartite viral polymerase enhanced replicative ability and pathogenicity in mice more significantly than did expression of individual polymerase subunit proteins. In ferrets, homologous expression of viral RNA polymerase complex genes in the context of the mutant Sw/1130 carrying the HA225G and NA315N modifications induced optimal replication in the upper nasal and lower respiratory tracts and also promoted efficient aerosol transmission to respiratory droplet contact ferrets. These data show that the synergistic function of the tripartite polymerase gene complex of CT-Sw/1204 is critically important for virulence and transmission independent of the surface glycoproteins. Sequence comparison results reveal putative differences that are likely to be responsible for variation in disease. Our findings may help elucidate previously undefined viral factors that could expand the host range and disease severity induced by triple-reassortant swine viruses, including the A(H1N1)pdm09 virus, and therefore further justify the ongoing development of novel antiviral drugs targeting the viral polymerase complex subunits.  相似文献   

16.
17.
18.
19.
20.
甲型流感病毒(influenza A virus,IAV)是每年季节性流感的主要病原体,也是全球儿童急性呼吸道感染的重要病毒性病原。非结构蛋白1(nonstructural protein 1,NS1)是由病毒基因组编码的蛋白,表达于被感染的细胞中,但不存在于病毒颗粒中。近年来,大量研究表明NS1是IAV的重要毒力因素,通过NS1-RNA之间、NS1-蛋白之间的相互作用,在拮抗宿主抗病毒反应、抑制宿主细胞凋亡、调节宿主及自身基因表达等多方面发挥作用。深入研究NS1与宿主细胞的相互作用,不仅可加深对IAV致病机制的理解,还可为预防和控制IAV的传播甚至暴发奠定理论基础,在新型抗病毒药物及疫苗研制中有着重要的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号