首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza virus infection is dependent on host cellular factors, and identification of these factors and their underlying mechanisms can provide important information for the development of strategies to inhibit viral infection. Here, we used a highly pathogenic H5N1 influenza virus to perform a genome-wide CRISPR/Cas9 gene knockout screen in human lung epithelial cells (A549 cells), and found that knockout of transmembrane protein immunoglobulin superfamily DCC subclass member 4 (IGDCC4) significantly reduced the replication of the virus in A549 cells. Further studies showed that IGDCC4 interacted with the viral hemagglutinin protein and facilitated virus internalization into host cells. Animal infection studies showed that replication of H5N1 virus in the nasal turbinates, lungs, and kidneys of IGDCC4-knockout mice was significantly lower than that in the corresponding organs of wild-type mice. Half of the IGDCC4-knockout mice survived a lethal H5N1 virus challenge, whereas all of the wild-type mice died within 11 days of infection. Our study identifies a novel host factor that promotes influenza virus infection by facilitating internalization and provides insights that will support the development of antiviral therapies.  相似文献   

2.
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.  相似文献   

3.
目的测试气管插管法接种高致病性禽流感病毒H5N1感染恒河猴的优势效果及疾病分析,为有效感染恒河猴、制备H5N1疾病模型提供实验依据。方法使用人源H5N1病毒液经气管插管滴入恒河猴上呼吸道进行感染,观察感染恒河猴的临床表现,每天采集咽拭子、鼻灌洗液,在感染前2d感染后第3、5、7天采血,感染后第3和7天分别解剖1只恒河猴,取支气管淋巴结、肠淋巴结、鼻甲、心、肝、脾、肺、肾、肠、气管、脑及血液进行病毒分离、核酸载量检测和血常规测定。结果感染后第2天恒河猴出现食欲下降,活动减少,并伴有一过性体温升高,白细胞数和淋巴细胞数下降。咽拭子、鼻灌洗液、肺、心、气管、脑、肝、肾、肠和血液中都能分离到H5N1病毒。结论气管插管法接种H5N1病毒能有效感染恒河猴,并在猴体内多组织中分离、检测到病毒,为制备完善的H5N1模型和检测指标确定、进一步研究H5N1病毒的致病机制等奠定了基础。  相似文献   

4.
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.  相似文献   

5.
An H5N1 avian influenza A virus was transmitted to humans in Hong Kong in 1997. Although the virus causes systemic infection and is highly lethal in chickens because of the susceptibility of the hemagglutinin to furin and PC6 proteases, it is not known whether it also causes systemic infection in humans. The clinical outcomes of infection in Hong Kong residents ranged widely, from mild respiratory disease to multiple organ failure leading to death. Therefore, to understand the pathogenesis of influenza due to these H5N1 isolates, we investigated their virulence in mice. The results identified two distinct groups of viruses: group 1, for which the dose lethal for 50% of mice (MLD50) was between 0.3 and 11 PFU, and group 2, for which the MLD50 was more than 10(3) PFU. One day after intranasal inoculation of mice with 100 PFU of group 1 viruses, the virus titer in lungs was 10(7) PFU/g or 3 log units higher than that for group 2 viruses. Both types of viruses had replicated to high titers (>10(6) PFU/g) in the lungs by day 3 and maintained these titers through day 6. More importantly, only the group 1 viruses caused systemic infection, replicating in nonrespiratory organs, including the brain. Immunohistochemical analysis demonstrated the replication of a group 1 virus in brain neurons and glial cells and in cardiac myofibers. Phylogenetic analysis of all viral genes showed that both groups of Hong Kong H5N1 viruses had formed a lineage distinct from those of other viruses and that genetic reassortment between H5N1 and H1 or H3 human viruses had not occurred. Since mice and humans harbor both the furin and the PC6 proteases, we suggest that the virulence mechanism responsible for the lethality of influenza viruses in birds also operates in mammalian hosts. The failure of some H5N1 viruses to produce systemic infection in our model indicates that multiple, still-to-be-identified, factors contribute to the severity of H5N1 infection in mammals. In addition, the ability of these viruses to produce systemic infection in mice and the clear differences in pathogenicity among the isolates studied here indicate that this system provides a useful model for studying the pathogenesis of avian influenza virus infection in mammals.  相似文献   

6.
Highly pathogenic influenza H5N1 virus continues to pose a threat to public health. Although the mechanisms underlying the pathogenesis of the H5N1 virus have not been fully defined, it has been suggested that cytokine dysregulation plays an important role. As the human respiratory epithelium is the primary target cell for influenza viruses, elucidating the viral tropism and innate immune responses of influenza H5N1 virus in the alveolar epithelium may help us to understand the pathogenesis of the severe pneumonia associated with H5N1 disease. Here we used primary cultures of differentiated human alveolar type II cells, alveolar type I-like cells, and alveolar macrophages isolated from the same individual to investigate viral replication competence and host innate immune responses to influenza H5N1 (A/HK/483/97) and H1N1 (A/HK/54/98) virus infection. The viral replication kinetics and cytokine and chemokine responses were compared by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that influenza H1N1 and H5N1 viruses replicated productively in type II cells and type I-like cells although with different kinetics. The H5N1 virus replicated productively in alveolar macrophages, whereas the H1N1 virus led to an abortive infection. The H5N1 virus was a more potent inducer of proinflammatory cytokines and chemokines than the H1N1 virus in all cell types. However, higher levels of cytokine expression were observed for peripheral blood monocyte-derived macrophages than for alveolar macrophages in response to H5N1 virus infection. Our findings provide important insights into the viral tropisms and host responses of different cell types found in the lung and are relevant to an understanding of the pathogenesis of severe human influenza disease.  相似文献   

7.
经SPF鸡胚增殖的虎源高致病性禽流感病毒A/Tiger/Harbin/01/2002(H5N1)株,其对MDCK细胞的TCID50为10-7.36/0.05 mL,经气管接种途径人工感染家猫,对感染致死的家猫和对照组家猫心、肝、脾、肺、肾、脑等脏器进行组织病理学观察和免疫组织化学染色,同时采集咽拭子和各脏器乳剂上清液进行RT-PCR检测,对耐过家猫与对照组家猫进行HI抗体测定。结果表明:剖检感染的死亡家猫以肺脏的损害最为明显,肺叶上有大片暗红色实变灶,呈多病灶融合性肺损伤。组织学光镜观察,病毒对家猫的损害主要见于肺脏,呈融合性炎性病变,浸润的主要为单核细胞,肺泡腔内可见较多量巨噬细胞浸润及少量蛋白样浆液渗出。免疫组织化学染色发现在支气管上皮细胞、少数肺泡上皮细胞和单核细胞胞浆中可见到该病毒的抗原阳性染色颗粒。RT-PCR检测结果在咽拭子以及肺、肾、心、脑组织中均扩出与理论值一致的464bp核酸条带,耐过家猫血清H5N1亚型流感病毒HI抗体效价为1∶32。  相似文献   

8.
Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.  相似文献   

9.
This study aimed to characterize the replication and pathogenic properties of a Korean pandemic (H1N1) 2009 influenza virus isolate in ferrets and mice. Ferrets infected with A/Korea/01/2009 (H1N1) virus showed mild clinical signs. The virus replicated well in lungs and slightly in brains with no replication in any other organs. Severe bronchopneumonia and thickening of alveolar walls were detected in the lungs. Viral antigens were detected in the bronchiolar epithelial cells, in peribronchial glands with severe peribronchitis and in cells present in the alveoli. A/Korea/01/2009 (H1N1) virus-infected mice showed weight loss and pathological lung lesions including perivascular cuffing, interstitial pneumonia and alveolitis. The virus replicated highly in the lungs and slightly in the nasal tissues. Viral antigens were detected in bronchiolar epithelial cells, pneumocytes and interstitial macrophages. However, seasonal H1N1 influenza virus did not replicate in the lungs of ferrets, and viral antigens were not detected. Thus, this Korean pandemic (H1N1) 2009 isolate infected the lungs of ferrets and mice successfully and caused more pathological lesions than did the seasonal influenza virus.  相似文献   

10.
Trace elements are pivotal for the host defense, as well as potentially important for viral replication and virulence. Studies of sequential changes in viral replication in target organs of infection are sparse and a possible association with changes in specific trace elements is unknown. In this study Balb/c mice were infected with Coxsackie virus B3 (CVB3). Results indicated that sequential changes in viral replication (RT-PCR) were related to changes in trace element (arsenic, copper, iron, selenium and zinc) concentrations (as determined by ICP-MS) on days 3, 5 and 7 of the infection in serum, heart, lung, liver, pancreas, kidney, spleen, intestine and brain. After an initial viral peak on day 3, viral load drastically decreased in all organs, i.e. by >99% (serum), 97% (lung), 98% (liver), 60% (pancreas), 95% (kidney) and 93% (spleen), except in the heart, intestine and brain in which viral load increased after day 3. Selenium decreased in all organs except the heart while arsenic decreased in all organs except the kidney, spleen and brain. Moreover, selenium was negatively correlated to viral load in serum, liver, pancreas and intestine. To conclude, these findings give evidence that trace elements are directly involved in the replication of CVB3.  相似文献   

11.
The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi.  相似文献   

12.
目的 通过观察MAN2C1转基因小鼠对H5N1高致病性禽流感病毒的易感性,以了解此转基因小鼠的免疫应答情况和MAN2C1基因在病毒感染中的作用。方法 以H5N1高致病性禽流感病毒滴鼻感染MAN2C1转基因小鼠,HE染色观察小鼠肺组织病理变化;RT-PCR和免疫组织化学方法检测小鼠肺组织H5N1病毒载量;间接ELISA方法 检测小鼠血清抗体滴度变化。结果 与对照组小鼠比较,MAN2C1转基因小鼠表现为更为严重的间质性肺炎,肺组织病毒载量增加,外周血中性粒细胞数目降低,淋巴细胞数量增加,血清IgG抗体滴度降低。结论 MAN2C1基因抑制了小鼠的体液免疫。  相似文献   

13.
Influenza A viruses are human and animal pathogens that cause morbidity and mortality, which range from mild to severe. The 2009 H1N1 pandemic was caused by the emergence of a reassortant H1N1 subtype (H1N1pdm) influenza A virus containing gene segments that originally circulated in human, avian, and swine virus reservoirs. The molecular determinants of replication and pathogenesis of H1N1pdm viruses in humans and other mammals are poorly understood. Therefore, we set out to elucidate viral determinants critical to the pathogenesis of this novel reassortant using a mouse model. We found that a glutamate-to-glycine substitution at residue 158 of the PB2 gene (PB2-E158G) increased the morbidity and mortality of the parental H1N1pdm virus. Results from mini-genome replication assays in human cells and virus titration in mouse tissues demonstrated that PB2-E158G is a pathogenic determinant, because it significantly increases viral replication rates. The virus load in PB2-E158G-infected mouse lungs was 1,300-fold higher than that of the wild-type virus. Our data also show that PB2-E158G had a much stronger influence on the RNA replication and pathogenesis of H1N1pdm viruses than PB2-E627K, which is a known pathogenic determinant. Remarkably, PB2-E158G substitutions also altered the pathotypes of two avian H5 viruses in mice, indicating that this residue impacts genetically divergent influenza A viruses and suggesting that this region of PB2 could be a new antiviral target. Collectively, the data presented in this study demonstrate that PB2-E158G is a novel pathogenic determinant of influenza A viruses in the mouse model. We speculate that PB2-E158G may be important in the adaptation of avian PB2 genes to other mammals, and BLAST sequence analysis identified a naturally occurring human H1N1pdm isolate that has this substitution. Therefore, future surveillance efforts should include scrutiny of this region of PB2 because of its potential impact on pathogenesis.  相似文献   

14.
Avian H5N1 influenza viruses cause severe disease and high mortality in infected humans. However, tissue tropism and underlying pathogenesis of H5N1 virus infection in humans needs further investigation. The objective of this work was to study viremia, tissue tropism and disease pathogenesis of H5N1 virus infection in the susceptible ferret animal model. To evaluate the relationship of morbidity and mortality with virus loads, we performed studies in ferrets infected with the H5N1 strain A/VN/1203/04 to assess clinical signs after infection and virus load in lung, brain, ileum, nasal turbinate, nasal wash, and blood. We observed that H5N1 infection in ferrets is characterized by high virus load in the brain and and low levels in the ileum using real-time PCR. In addition, viral RNA was frequently detected in blood one or two days before death and associated with symptoms of diarrhea. Our observations further substantiate pathogenicity of H5N1 and further indicate that viremia may be a bio-marker for fatal outcomes in H5N1 infection.  相似文献   

15.
Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE) cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004) and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998), the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of α2-6-linked sialic acid receptors and human airway trypsin-like (HAT) protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells'' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the epithelium regeneration, the data generated from the undifferentiated NHBE cultures may also be relevant to disease pathogenesis.  相似文献   

16.
The pathogenesis of human influenza H5N1 virus infection remains poorly understood and controversial. Cytokine dysregulation in human infection has been hypothesized to contribute to disease severity. We developed in vitro cultures of mouse bone marrow derived macrophages (BMDMΦ) from C57BL/6N mouse to compare influenza A (H5N1 and H1N1) virus replication and pro-inflammatory cytokine and chemokine responses. While both H1N1 and H5N1 viruses infected the mouse bone marrow derived macrophages, only the H1N1 virus had showed evidence of productive viral replication from the infected cells. In comparison with human seasonal influenza H1N1 (A/HK/54/98) and mouse adapted influenza H1N1 (A/WSN/33) viruses, the highly pathogenic influenza H5N1 virus (A/HK/483/97) was a more potent inducer of the chemokine, CXCL 10 (IP-10), while there was not a clear differential TNF-α protein expression pattern. Although human influenza viruses rarely cause infection in mice without prior adaption, the use of in vitro cell cultures of primary mouse cells is of interest, especially given the availability of gene-defective (knock-out) mice for specific genes.  相似文献   

17.
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3′UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR‐584‐5p and miR‐1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down‐regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR‐1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host‐mediated inhibition of viral replication through down‐regulation of cellular miRNAs, which target its viral genome.  相似文献   

18.
Highly pathogenic avian influenza A (HPAI), subtype H5N1, remains an emergent threat to the human population. While respiratory disease is a hallmark of influenza infection, H5N1 has a high incidence of neurological sequelae in many animal species and sporadically in humans. We elucidate the temporal/spatial infection of H5N1 in the brain of ferrets following a low dose, intranasal infection of two HPAI strains of varying neurovirulence and lethality. A/Vietnam/1203/2004 (VN1203) induced mortality in 100% of infected ferrets while A/Hong Kong/483/1997 (HK483) induced lethality in only 20% of ferrets, with death occurring significantly later following infection. Neurological signs were prominent in VN1203 infection, but not HK483, with seizures observed three days post challenge and torticollis or paresis at later time points. VN1203 and HK483 replication kinetics were similar in primary differentiated ferret nasal turbinate cells, and similar viral titers were measured in the nasal turbinates of infected ferrets. Pulmonary viral titers were not different between strains and pathological findings in the lungs were similar in severity. VN1203 replicated to high titers in the olfactory bulb, cerebral cortex, and brain stem; whereas HK483 was not recovered in these tissues. VN1203 was identified adjacent to and within the olfactory nerve tract, and multifocal infection was observed throughout the frontal cortex and cerebrum. VN1203 was also detected throughout the cerebellum, specifically in Purkinje cells and regions that coordinate voluntary movements. These findings suggest the increased lethality of VN1203 in ferrets is due to increased replication in brain regions important in higher order function and explains the neurological signs observed during H5N1 neurovirulence.  相似文献   

19.
Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition, and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. Primary mouse and human macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro. These results together indicate that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection.  相似文献   

20.
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号