首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avarol, a marine sesquiterpenoid hydroquinone, and 14 avarol derivatives have shown interesting anti-inflammatory properties in previous studies. In this study, avarol and derivatives were evaluated in high-throughput keratinocyte culture models using cytokeratin 10 and SKALP/Elafin expression as markers for respectively normal and psoriatic differentiation. Avarol and five of its derivatives (5, 10, 13, 14 and 15) were selected for further study. Only 10, 13, 14 and 15 were able to inhibit keratinocyte cell growth. Changes in expression levels of 22 genes were assessed by quantitative real time PCR (qPCR). From these genes, TNFalpha mRNA levels showed the strongest changes. For compound 13, 15 and dithranol (used as a model antipsoriatic drug), a dose-dependent downregulation of TNFalpha mRNA was found. The changes in TNFalpha mRNA were confirmed at the protein level for compound 13. Additionally, this compound was able to reduce also IL-8 and COX-2 mRNA levels and this effect was correlated with a reduction in COX-2 protein expression. The mechanism of action of this compound involves at least the inhibition of NF-kappaB-DNA binding activity. In conclusion, our high-throughput screening models in combination with quantitative assessment of changes in gene expression profiles identified the avarol derivative 13, a benzylamine derivative of avarol at the 4' position of benzoquinone ring, as an interesting anti-psoriatic drug candidate that inhibits keratinocyte cell growth and TNFalpha and COX-2 expression.  相似文献   

2.
Semisynthesis of 13 new thio avarol derivatives (4-16) and in vitro evaluation on the photodamage response induced by UVB irradiation are described. Their ability to inhibit NF-kappaB activation and TNF-alpha generation in HaCaT cells as well as their antioxidant capacity in human neutrophils has also been studied. Among them we have identified two monophenyl thio avarol derivatives (4-5) lacking cytotoxicity which can be considered promising UVB photoprotective agents through the potent inhibition of NF-kappaB activation with a mild antioxidant pharmacological profile.  相似文献   

3.
4.
5.
6.
A main metabolic product of the sponge Dysidea avara was isolated and purified and subsequently identified as avarol by applying a series of analytical techniques, e.g. [13C]NMR, [1H]NMR and i.r. spectroscopy. This sesquiterpenoid hydroquinone was found to possess strong cytostatic activity. Using the L5178y mouse lymphoma cell system in vitro (roller tube assays) avarol reduced cell growth to 50% at a concentration of 0.9 microM. Avarol treated cells did not show "unbalanced growth". Avarol interfered with mitotic processes, preventing telophase formation. Incorporation studies with precursors for DNA, RNA, protein and glycoprotein syntheses revealed increased incorporation rates in response to avarol treatment. From these results and further autoradiographical experiments it is suggested that inhibition of cell growth is due to changes of the intracellular pools and/or alterations of the permeability properties of the cell membrane for the precursors. Avarol diacetate caused the same cytostatic effect as avarol.  相似文献   

7.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

8.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

9.
10.
11.
12.
The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.  相似文献   

13.
To determine the contribution of IL-1beta, tumor necrosis factor alpha (TNF-alpha) and IL-17 to AP-1, NF-kappaB and Egr-1 activation in rheumatoid arthritis, the effect of the cytokines used alone or in combination was measured on TF expression in rheumatoid synoviocytes. Effects on mRNA expression were measured by RT-PCR and effects on nuclear translocation were measured by immunocytochemistry. To assess the functional consequences of cytokine induction, osteoprotegerin levels were measured in synoviocyte supernatants.IL-1beta and TNF-alpha alone at optimal concentration (100 pg/ml) induced the nuclear translocation of NF-kappaB and almost all AP-1 members, except JunB and Egr-1 for IL-1beta and except Fra-2 and Egr-1 for TNF-alpha. IL-17 was clearly less potent since no nuclear translocation was observed, except for a weak activation of Fra-1 and NF-kappaB. More importantly, when these cytokines were used at low concentrations, their combination showed a synergistic effect on almost all the TFs, except for Egr-1, with a particular effect on Fra-1 and NF-kappaB. Increased recruitment of additional factors was induced when the three cytokines were combined. IL-1 and TNF-alpha induced mRNA expression of c-jun while IL-17 had no effect. A synergistic effect was seen with their combination. A similar synergistic effect was observed for osteoprotegerin production when these three cytokines were combined at low concentrations.AP-1 and NF-kappaB pathways were highly sensitive to the combination through synergistic mechanisms. These effects observed in rheumatoid arthritis synoviocytes may reflect the conditions found in the rheumatoid arthritis joint and may contribute to the mode of action of cytokine inhibitors.  相似文献   

14.
Pulmonary intravascular macrophages (PIMs) are often responsible for the clearance of blood-borne pathogens, including endotoxin, lipopolysaccharide of Gram-negative bacteria. It is well accepted that PIMs play a pivotal role in the pathogenesis of endotoxin-induced acute lung injury. However, the mechanisms by which PIMs are involved in the lipopolysaccharide-induced inflammatory responses remain unclear. Through the present study the following results were found: (1) When challenged with lipopolysaccharide (10 micrograms/ml), PIMs underwent marked cellular enlargement, intercellular adhesion plaques became longer, and some particulates were enwrapped in the pseudopods. (2) Lipopolysaccharide could up-regulate the expression of some inflammatory mediators in PIMs, including TNF-alpha, IL-1beta, IL-6, IL-8, and COX-2, and these up-regulated expression of inflammatory mediators correlated with NF-kappaB activation. (3) Dexamethasone as well as acetylsalicylic acid reduced the expression of TNF-alpha in lipopolysaccharide-challenged PIMs, and the decreased expression of TNF-alpha was also consistent with decreased NF-kappaB activation. Our results suggest that NF-kappaB activation in PIMs followed by phagocytizing lipopolysaccharide resulted in the up-regulation of TNF-alpha, IL-1beta, IL-6, IL-8, and COX-2, which could be alleviated by dexamethasone.  相似文献   

15.
16.
Nuclear factor kappa B (NF-kappaB) is a key mediator of inflammation. Unchecked NF-kappaB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1-binding protein 1 (TAX1BP1) is a negative regulator of TNF-alpha- and IL-1beta-induced NF-kappaB activation and that binding to mono- and polyubiquitin by a ubiquitin-binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF-kappaB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age-dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF-alpha and IL-1beta. TAX1BP1-/- cells are more highly activated for NF-kappaB than control cells when stimulated with TNF-alpha or IL-1beta. Mechanistically, TAX1BP1 acts in NF-kappaB signalling as an essential adaptor between A20 and its targets.  相似文献   

17.
18.
Menthone, the Chinese old remedy extracted from genus Mentha, has been widely used as a cooling agent, a counterirritant for pain relief, and for the treatment of pruritus. However, its detail mechanisms for interfering inflammatory reaction remain unknown. In this study, we found that menthone can suppress the lipopolysaccharide (LPS)-induced proinflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), as well as nuclear factor kappaB (NF-kappaB) activity induced by LPS and other inflammatory agents, including 12-O-tetradecanoylphorbol-13-acetate, hydrogen peroxide, okadaic acid, and ceramide. Furthermore, our data also demonstrated that the translocation of NF-kappaB activated by LPS into the nucleus was suppressed by menthone, and I-kappaB and beta-transducin repeat containing protein (beta-TrCP) were both involved in this suppression. To sum up, this study has provided molecular evidence for menthone effect on the LPS-induced cytokine production, NF-kappaB activation, and the involvement of I-kappaB and beta-TrCP.  相似文献   

19.
20.
Airway smooth muscle cells (ASMC) are a source of inflammatory chemokines that may propagate airway inflammatory responses. We investigated the production of the CXC chemokine growth-related oncogene protein-alpha (GRO-alpha) from ASMC induced by cytokines and the role of MAPK and NF-kappaB pathways. ASMC were cultured from human airways, grown to confluence, and exposed to cytokines IL-1beta and TNF-alpha after growth arrest. GRO-alpha release, measured by ELISA, was increased by >50-fold after IL-1beta (0.1 ng/ml) or 5-fold after TNF-alpha (1 ng/ml) in a dose- and time-dependent manner. GRO-alpha release was not affected by the T helper type 2 cytokines IL-4, IL-10, and IL-13. IL-1beta and TNF-alpha also induced GRO-alpha mRNA expression. Supernatants from IL-1beta-stimulated ASMC were chemotactic for neutrophils; this effect was inhibited by anti-GRO-alpha blocking antibody. AS-602868, an inhibitor of IKK-2, and PD-98059, an inhibitor of ERK, inhibited GRO-alpha release and mRNA expression, whereas SP-600125, an inhibitor of JNK, reduced GRO-alpha release without effect on mRNA expression. SB-203580, an inhibitor of p38 MAPK, had no effect. AS-602868 but not PD-98059 or SP-600125 inhibited p65 DNA-binding induced by IL-1beta and TNF-alpha. By chromatin immunoprecipitation assay, IL-1beta and TNF-alpha enhanced p65 binding to the GRO-alpha promoter, which was inhibited by AS-602868. IL-1beta- and TNF-alpha-stimulated expression of GRO-alpha from ASMC is regulated by independent pathways involving NF-kappaB activation and ERK and JNK pathways. GRO-alpha released from ASMC participates in neutrophil chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号