共查询到20条相似文献,搜索用时 0 毫秒
1.
Flagellar filaments from Methanospirillum hungatei GP1 and JF1 were isolated and subjected to a variety of physical and chemical treatments. The filaments were stable to temperatures up to 80 degrees C and over the pH range of 4 to 10. The flagellar filaments were dissociated in the detergents (final concentration of 0.5%) Triton X-100, Tween 20, Tween 80, Brij 58, N-octylglucoside, cetyltrimethylammonium bromide, and Zwittergent 3-14, remaining intact in only two of the detergents tested, sodium deoxycholate and 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS). Spheroplasting techniques were used to separate the internal cells from the complex sheath, S-layer (cell wall), and end plugs of M. hungatei. The flagellar basal structure was visualized after solubilization of membranes by CHAPS or deoxycholate. The basal structure appeared to be a simple knob with no apparent ring or hook structures. The multiple, glycosylated flagellins constituting the flagellar filaments were cleaved by proteases and cyanogen bromide. The cyanogen bromide-generated fragments of M. hungatei GP1 flagellins were partially sequenced to provide internal sequence information. In addition, the amino acid composition of each flagellin was determined and indicated that the flagellins are distinct gene products, rather than differentially glycosylated forms of the same gene product. 相似文献
2.
Kinetics of Formate Metabolism in Methanobacterium formicicum and Methanospirillum hungatei 总被引:1,自引:6,他引:1 下载免费PDF全文
The kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei were studied with log-phase formate-grown cultures. The progress of formate degradation was followed by the formyltetrahydrofolate synthetase assay for formate and fitted to the integrated form of the Michaelis-Menten equation. The Km and Vmax values for Methanobacterium formicicum were 0.58 mM formate and 0.037 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanobacterium formicicum was 26 μM. The Km and Vmax values for Methanospirillum hungatei were 0.22 mM and 0.044 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanospirillum hungatei was 15 μM. The apparent Km for formate by formate dehydrogenase in cell-free extracts of Methanospirillum hungatei was 0.11 mM. The Km for H2 uptake by cultures of Methanobacterium formicicum was 6 μM dissolved H2. Formate and H2 were equivalent electron donors for methanogenesis when both substrates were above saturation; however, H2 uptake was severely depressed when formate was above saturation and the dissolved H2 was below 6 μM. Formate-grown cultures of Methanobacterium formicicum that were substrate limited for 57 h showed an immediate increase in growth and methanogenesis when formate was added to above saturation. 相似文献
3.
Three-dimensional architecture of the cell sheath and septa of Methanospirillum hungatei. 总被引:10,自引:9,他引:1 下载免费PDF全文
The methanogenic bacterium Methanospirillum hungatei exists as filaments which have a very unusual cell wall architecture, comprising a long cylindrical sheath within which there may be many individual cells arranged in a line. The sheath has a two-dimensional crystalline structure, and the cells are separated within the tube by septa which also have a crystalline structure. We have used computer image processing of tilted-view electron micrographs to analyze the structure in negative stains of both of these components in three dimensions. The repeating unit of the sheath consists of four approximately spherical domains ca. 2.5 nm in diameter arranged in a row. Based on observations of the type of lattice imperfections that occur, we suggest that each of the domains represents a separate polypeptide subunit and that the subunits are incorporated into the wall one by one. The septa are circular plates of remarkably constant size. They are normally found as double layers. They are hexagonally symmetrical and consist of trimerically associated subunits which interact about dimer axes to form an open network containing large pores ca. 15 nm in diameter. 相似文献
4.
《Channels (Austin, Tex.)》2013,7(3):269-279
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K+-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K+ concentrations ([K+]o). We found that Kir4.1 is regulated by K+o. Increased [K+]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K+ from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K+o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs+ and Ba2+ substitute for K+ and prevent deactivation of the channel in the absence of K+o. Cs+ blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb+ and NH4+ permeate Kir4.1, only Rb+ is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel’s sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4+ to permeate the channel without inducing these changes. 相似文献
5.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K(+)-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K(+) concentrations ([K(+)]o). We found that Kir4.1 is regulated by K(+)o. Increased [K(+)]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K(+) from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K(+)o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs(+) and Ba(2+) substitute for K(+) and prevent deactivation of the channel in the absence of K(+)o. Cs(+) blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb(+) and NH4(+) permeate Kir4.1, only Rb(+) is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel's sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4(+) to permeate the channel without inducing these changes. 相似文献
6.
Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei 总被引:2,自引:0,他引:2
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by (13)C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-(13)C]propionate was converted to [2-(13)C]acetate, with no [1-(13)C]acetate formed. Butyrate from [3-(13)C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-(13)C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-(13)C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-(13)C-labeled propionate yielded both [1-(13)C]acetate and [2-(13)C]acetate. When (13)C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, (13)C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate. 相似文献
7.
Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei 总被引:8,自引:0,他引:8
The cytoplasmic membrane of Methanospirillum hungatei was isolated from osmotic lysates of spheroplasts, with yields of 7-8% of the cell dry weight. Cytoplasmic contamination was negligible, as judged by the removal of soluble enzymes. The cytoplasmic membrane consists of lipid (35-37%), primarily as a biphytanyldiglycerol tetraether glycolipid; protein (45-50%); and carbohydrate (10-12%). Ultra-thin sections showed that the trilaminar membrane formed vesicles with a maximum diameter of 0.4 microns. Protrusions of membrane projecting from the vesicles were seen often in negatively stained preparations. Fractionation of M. hungatei cells grown in the presence of [14C]mevalonic acid revealed that 90% of the phytanyl lipids were present in the cytoplasmic membrane band, with two minor bands accounting for the remainder of the label. Approximately 50% of the galactose, glucose, and mannose present in the cytoplasmic membrane was found in lipid extracts, while the remainder of these sugars and 98% of the rhamnose were present as nonlipid sugars. The cell sheath, isolated with a yield of 13% of the cell dry weight, contained the same sugars as the cytoplasmic membrane, but in very different proportions. Amino acid analysis of the membrane proteins showed that hydrophobic amino acid residues made up 37% of the total, neutral amino acids, 39%, basic, 8%, acidic, 16%, and that half-cysteine was present. Sodium dodecyl sulfate-polyacrylamide gel patterns of solubilized cytoplasmic membrane proteins revealed major bands at 195, 74.5, 44, 32, and 30 KDa. Significant amounts of nickel co-isolated with the cytoplasmic membrane, accounting for 0.16% of the membrane dry weight. 相似文献
8.
ATP-sensitive K+ channels in insulinoma cells are activated by nonesterified fatty acids. 总被引:2,自引:0,他引:2
Both 86Rb+ efflux experiments and electrophysiological studies have shown that arachidonic acid and other nonesterified fatty acids activate ATP-sensitive K+ channels in insulinoma cells (HIT-T15). Activation was observed with arachidonic, oleic, linoleic, and docosahexaenoic acid but not with myristic, stearic, and elaidic acids. Fatty acid activation of ATP-sensitive K+ channels was blocked by antidiabetic sulfonylureas such as glibenclamide. The activating effect of arachidonic acid was unaltered by indomethacin and by nordihydroguaiaretic acid, indicating that it is not due to metabolites of arachidonic acid via cyclooxygenase or lipoxygenase pathways. Moreover, the nonmetabolizable analogue of arachidonic acid, eicosatetraynoic acid, was an equally potent activator. Activation of ATP-sensitive K+ channels by fatty acids was potentiated by diacylglycerol and was inhibited by calphostin C, an inhibitor of protein kinase C. These findings indicate that fatty acid activation of ATP-sensitive K+ channels is most likely due to the participation of arachidonic acid (and other fatty acid)-activated protein kinase C isoenzymes. Activation of ATP-sensitive K+ channels by nonesterified fatty acids is not involved in the control of insulin secretion since arachidonic acid stimulates insulin secretion from insulinoma cells instead of inhibiting it. 相似文献
9.
Isolation and Ultrastructure of the Flagella of Methanococcus thermolithotrophicus and Methanospirillum hungatei 总被引:3,自引:0,他引:3 下载免费PDF全文
The flagella of the archaebacteria Methanococcus thermolithotrophicus and Methanospirillum hungatei enter the cells in regions with ultrastructure resembling that of the polar organelles found in a variety of eubacteria. Flagella of both organisms consist of a filament, a hook, and a basal body with two rings similar to those of gram-positive eubacteria. The integrity of the flagella of M. thermolithotrophicus is lost in the absence of high salt concentrations, and those of both organisms are unstable at high pH. The flagellar filaments of M. hungatei are composed of two flagellins of 24 and 26 kilodaltons. 相似文献
10.
Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane 总被引:2,自引:2,他引:2 下载免费PDF全文
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites. 相似文献
11.
Monoclonal antibodies were prepared against two species of Methanomicrobiaceae. Antibody 1A is specific for Methanospirillum hungatei strain JF1 and the determinant it recognizes is expressed on the surface of JF1 cells, where it is exposed and accessible to antibody. The determinant is found in a polypeptide (MW<12,000) in the sheath that covers the bacterial cell; it is not present in Methanospirillum hungatei strain GP1; and it is not expressed on the surface of whole cells of the other 24 methanogenic bacteria tested. It is therefore a marker of strain JF1, consequently, antibody 1A is potentially useful for tracking JF1 and fragments thereof in a variety of samples. Antibody 7A is specific for Methanogenium cariaci JR1c. It did not react with any other methanogen tested, not even with Mg. marisnigri or Ms. hungatei JF1, although these cross-react with Mg. cariaci if tested with polyclonal antisera. Therefore antibody 7A recognizes specifically a marker of Mg. cariaci JR1c.Abbreviations SIA
slide immunoenzymatic assay
- SDS-PAGE
sodium dodecylsulfate polyacrylamide gel electrophoresis 相似文献
12.
Using the patch-clamp technique, we demonstrate here the opening of K+ channels evoked by the actively transported amino acid L-alanine in isolated Necturus enterocytes. These channels had a conductance of about 30 pS and their activation was dependent on transmembrane electrical potential and cytosolic Ca2+. 相似文献
13.
The uptake of 45Ca2+ by human red blood cells induced by vanadate was found to be inhibited by a number of divalent cations. The following order of potencies was determined (in parentheses, IC50 in mmol/l): Cu2+ (0.006), Zn2+ (0.014), Cd2+ (0.030), Co2+ (0.20), Ni2+ (0.25), Mn2+ (8.0), Ba2+ (9.0), Sr2+ (14.0). The effects of Cu2+, Zn2+ and Cd2+ were biphasic--over a critical concentration their inhibitory potencies decreased, and finally, were lost. Besides Ca2+, Sr2+, Ba2+ and Mn2+ were also taken up, but only Ca2+ and Sr2+ were capable of eliciting the Gárdos effect. Ni2+ was not taken up. Several HS reagents also inhibited 45Ca2+ uptake. The following order of potencies was determined (in parentheses, IC50 in mmol/l): mersalyl (0.0025), 5,5'-dithiobis(2,2'-dinitrobenzoic acid) (0.011), p-chloromercuric acid (0.042), N-ethylmaleimide (2.0). The effects of all HS reagents except N-ethylmaleimide were biphasic. The biphasicity of the actions of the indicated agents was caused by the opening of a new pathway for 45Ca2+ entry which is different from that observed in the presence of vanadate alone, and is inhibited by low concentrations of these agents. The modified form of the anion channel seems to be identical with the former pathway. The last one is mediated by a transport protein which has an ionic specificity similar to Ca2+ channels in excitable tissues, and contains an HS group which is essential for the transport function. 相似文献
14.
Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH. 总被引:2,自引:0,他引:2 下载免费PDF全文
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup. 相似文献
15.
Pathway of Propionate Oxidation by a Syntrophic Culture of Smithella propionica and Methanospirillum hungatei 下载免费PDF全文
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by 13C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-13C]propionate was converted to [2-13C]acetate, with no [1-13C]acetate formed. Butyrate from [3-13C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-13C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-13C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-13C-labeled propionate yielded both [1-13C]acetate and [2-13C]acetate. When 13C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, 13C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate. 相似文献
16.
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup. 相似文献
17.
Dissolution and immunochemical analysis of the sheath of the archaeobacterium Methanospirillum hungatei GP1. 下载免费PDF全文
The sheath of Methanospirillum hungatei GP1 was degraded by three dissolution techniques, which produced a range of soluble products. By using 0.05 M L-arginine buffer (pH 12.6) at 90 degrees C for 10 min, 74% (dry weight) of the sheath was dissolved; however, the solubilized polypeptides were extensively degraded. Treatment with 2% beta-mercaptoethanol and 2% sodium dodecyl sulfate at 90 degrees C in 0.05 M 2(N-cyclohexylamino)ethanesulfonic acid (CHES) buffer (pH 9.0) solubilized 42% (dry weight) of the sheath as a group of polypeptides of 30 to 40 kDa. At 100 degrees C for 2 h, 5% beta-mercaptoethanol, 2% sodium dodecyl sulfate (SDS), and 20 mM EDTA released 74% of the sheath's mass as a group of polypeptides of 10 to 40 kDa. All solubilized products were examined by SDS-polyacrylamide gel electrophoresis, and a range of high- and low-molecular-weight polypeptides was identified. None were glycoproteins. Hoops, which comprise the sheath's structure, were seen by electron microscopy after all of the attempted dissolutions. Monoclonal antibodies were produced against the 10- to 40-kDa range of solubilized products and against the approximately 40-kDa polypeptides, and polyclonal antiserum was produced against an 18-kDa polypeptide. These immunological markers were used in Western immunoblotting and protein A-colloidal gold-antibody probing by electron microscopy to identify the structural location of the various polypeptides. Native sheath, which possesses 2.8-nm particles on its outer surface (M. Stewart, T.J. Beveridge, and G.D. Sprott, J. Mol. Biol. 183:509-515, 1985; P.J. Shaw, G.J. Hills, J.A. Henwood, J.E. Harris, and D.B. Archer, J. Bacteriol. 161:750-757, 1985), presented a gentle wave-form surface in platinum-shadowed specimens. In contrast, the inner face of the sheath was highlighted by ridges lying perpendicular to the longitudinal axis of the sheath and likely corresponded to hoop boundaries. Both the polyclonal and monoclonal antibodies were specific for different faces; polyclonal antibodies labeled the inner face, whereas monoclonal antibodies labeled the outer face. Accordingly, the apparent asymmetry of structure between the two faces of the sheath can be correlated by our immunochemical probing with a distinct asymmetry in the distribution of exposed polypeptides between the faces. The possible implications of this asymmetry for growth and maturation of the sheath are explained. 相似文献
18.
The permeability of several cell lines, including HeLa, L929, 3T6 and 3T3, to various compounds is affected by the concentration of divalent cations in the culture medium. In the absence of Mg2+ ions but with 4-8 mM CaCl2 in the medium, HeLa and L929 cells become permeabilized, as measured by the entry of the aminoglycoside antibiotic hygromycin B. However, 3T3 and 3T6 cells become much more permeable when calcium and magnesium are both absent from the medium. Addition of Mg2+ above 2 mM abolishes the permeabilization induced by Ca2+. Basic pH favors permeabilization, whereas acidic pH inhibits the entry of hygromycin B. Increased entry of macromolecules, such as the toxin alpha-sarcin, horseradish peroxidase (HRP) and luciferase, is also observed under permeabilization conditions, suggesting that this method could be of general use, since it is not harmful to cells and is fully reversible. Exit of 86Rb+ ions and [3H]uridine-labelled nucleotides was also assayed. We did not observe increased release of these compounds from preloaded cells under various calcium concentrations. Finally, the effects of several inhibitors of endocytosis and other membrane functions on the permeabilization inhibitors of endocytosis and other membrane functions on the permeabilization process were also analysed. The entry of alpha-sarcin was not affected by nifedipine, dibucaine or mepacrine, but was partially inhibited by NH4Cl, amantadine and chloroquine. 相似文献
19.
High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. 总被引:1,自引:6,他引:1 下载免费PDF全文
The inner and outer surfaces of the sheath of Methanospirillum hungatei GP1 have been imaged for the first time by using a bimorph scanning tunneling microscope (STM) on platinum-coated or uncoated specimens to a nominal resolution in height of ca. 0.4. nm. Unlike more usual types of microscopy (e.g., transmission electron microscopy), STM provided high-resolution topography of the surfaces, giving good depth detail which confirmed the sheath to be a paracrystalline structure possessing minute pores and therefore impervious to solutes possessing a hydrated radius of greater than 0.3 nm. STM also confirmed that the sheath consisted of a series of stacked hoops approximately 2.5 nm wide which were the remnants of the sheath after treatment with 2% (wt/vol) sodium dodecyl sulfate-2% (vol/vol) beta-mercaptoethanol (pH 9.0). No topographical infrastructure could be seen on the sides of the hoops. This research required the development of a new long-range STM capable of detecting small particles such as bacteria on graphite surfaces as well as a new "hopping" STM mode which did not deform the poorly conducting bacterial surface during high-resolution topographical analysis. 相似文献
20.
Cytoskeletal reorganization processes can be analyzed by studying the nanometer-scale spontaneous motion of beads bound to the cytoskeleton. The bead motion is determined by force fluctuations within the cytoskeletal network that originates from myosin motor activity and dynamic restructuring of cytoskeletal filaments. We investigated to what extend the spontaneous bead motion is influenced by the dynamics of the link between the bead and the cytoskeleton in the presence of divalent cations. Our data show that, when K562 cells expressing constitutively (alpha 5 beta 1) integrin and when stably transfected with (alpha v beta 3) integrin, spontaneous bead motion is dramatically affected by the presence of 1mM Mn(2+) (integrin, activate state) compared to 1mM Ca(2+)/Mg(2+) ions (integrin, inactive state). The directionality of the bead motion, which is influenced by the overall stability of the cytoskeletal network and by actomyosin-generated forces, is markedly different, whilst the persistence remained similar due to the specific binding of either Mn(2+) or Mg(2+)/Ca(2+) ions. 相似文献