首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. The behaviour of the circadian locomotor rhythm of the New Zealand weta, Hemideina thoracica (White), supports the model that the underlying pacemaker consists of a population of weakly coupled oscillators. Certain patterns of locomotor activity, previously demonstrated almost exclusively in vertebrates, are presented here as evidence for the above hypothesis. They include after-effects of various pre-treatments, rhythm-splitting and spontaneous changes in the rhythm. After-effects, which describe the unstable behaviour of free-running circadian rhythms following particular experimental perturbations, have been observed in Hemideina following single light pulses, constant dim light, and laboratory and natural entrainment. Period changes occurred in the activity rhythm after single light pulses of 8-h and 12-h duration (25 lx). Constant dim light (0.1 lx) increased the free-running period (τ) of the activity rhythm, but the after-effect of constant dim light was either an increase or a decrease in τ. After-effects upon both τ and the active phase length of the activity rhythm were found following non-24-h light entrainment cycles with 8-h and 12-h light phases of 25 lx. Qualitative measurements of these after-effects upon τ are presented which reveal a relationship between both the direction and amount of change in τ, and the difference between entrainment cycle length (T) and pre-entrainment free-running period. The after-effect of natural entrainment was an initial short-period free-run (τ < 24h) lasting 5–10 days, generally followed by a rapid period lengthening to τ= 25–26 h. Support for the population model was provided by spontaneous dampening, recovery, and period changes of the rhythm, together with the disruption of the active phase following critical light perturbations, and rhythm-splitting. These Hemideina results are compared with the simulations of the Coupled Stochastic System of Enright (1980).  相似文献   

2.
The effects of brief light pulses (1-60 min in duration) on the circadian rhythm of locomotor activity and/or the neuroendocrine-gonadal axis was investigated in male Djungarian hamsters. Exposure of hamsters free-running in constant darkness to a single 1-h pulse of light induced phase-dependent phase shifts in the rhythm of locomotor activity. The general shape of the "phase-response curve" was similar to that observed in other animals; phase-delays and phase-advances were induced by light pulses delivered in the early and late subjective night, respectively, while light pulses during the subjective day induced little or no phase-shift in the activity rhythm. Animals exposed for 7 days to 1-min of light during the night in animals otherwise exposed to 6L:18D resulted in increased levels of serum FSH and testicular weight. Daily exposure to two 1-h or two 10-min pulses of light (but not two 1-min pulses) for 10 days resulted in stable entrainment of the activity rhythm as well as testicular weight gains and serum FSH increases. When two 10-min pulses of light were presented 8 and 16 h apart, some animals showed a short-day entrainment pattern (i.e., locomotor activity confined to the long period of darkness) while other animals showed a long-day entrainment pattern (i.e., locomotor activity confined to the short period of darkness). Importantly, the stimulatory effects of light on neuroendocrine-gonadal activity were clearly dependent on the phase-relationship between the light pulses and the circadian rhythm of locomotor activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6–9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6–9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

4.
Summary Locomotor activity of the river lamprey, Lampetra japonica, was investigated under a light-dark (LD 1212) cycle and under continuous dark conditions. Intact lampreys were entrained to the light:dark cycle. They were active mainly in the early half of the dark period and inactive in light period. The light:dark entrainment continued in 72.7% of lampreys after the removal of bilateral eyes, but additional pinealectomy made the entrainment disappear in all lampreys. When lampreys were pinealectomized with their eyes intact, light: dark entrainment was abolished in most cases. The results indicate that the pineal organ of the lamprey is a photoreceptive organ responsible for synchronizing locomotor activity to LD cycle. Under continuous dark conditions, the locomotor activity began to free-run with a period of 21.3 ± 0.9 h (mean ± SD, n = 53). This circadian rhythmicity was not affected by the removal of lateral eyes but was abolished by pinealectomy. The pineal organ appears to function as an oscillator, or as one of the oscillators, for the circadian locomotor rhythm of lampreys.Abbreviations DD continuous dark - LD light:dark  相似文献   

5.
Summary Cycles of 12 h presence and 12 h absence of motherMus booduga entrain the circadian rhythm in the locomotor activity of her pups such that the pups rest in her presence and are active in her absence. We wanted to determine whether this maternal entrainment arises because activity is inhibited by the mother's presence and enhanced by her absence (masking). We performed experiments with the period of the presence/absence cycles ranging from 20 to 28 h and find that only periods of 23–25 h allow entrainment while periods below 23 h and above 25 h do not allow entrainment. Our results speak against the involvement of masking and in favour of the involvement of a genuine circadian organization.Abbreviations PA presence and absence of mother - LD light and darkness - DD continuous darkness - T period of Zeitgeber - period of activity rhythm - phase angle difference  相似文献   

6.
Summary The photosensitive phase for the photoperiodic response of Japanese quail was delineated with 3 h main photoperiods and 0.25 h night breaks in cycles (T) of 24 and 27 h. UnderT24 there was one peak of induction of testicular growth and luteinizing hormone release, while underT27 there were two, the first of which had a phase angle which was about 1.5 h more positive than that of the peak inT24. In contrast, the phase angle of locomotor activity underT27 was 3–4 h more positive than underT24. During entrainment to 1 h photoperiods in cycles between 19.1 and 25.7 h in length the rate of testicular growth (k) remained close to zero even though the subjective night of the activity rhythm was illuminated in some treatments. The ratek also remained close to zero when quail were exposed to 3 h photoperiods in cycles between 21 and 36 h in length, and underT30 the critical daylength for photoperiodic induction was only 1.5 h shorter than that underT24. The results suggest that asT is altered the changes in the phase angle of the photoinducible phase are smaller than those of the rhythm of locomotor activity, indicating the involvement of oscillators with different entrainment properties. This hypothesis is neither supported nor excluded by consideration of the internal coincidence model.  相似文献   

7.
While much is known about the circadian systems of rodents, chronobiological studies of other mammalian groups have been limited. One of the most extensively studied nonrodent species, both in the laboratory and in the wild, is the European rabbit. The aim of this study was to extend knowledge of the rabbit circadian system by examining its phasic response to light. Twelve Dutch-Himalayan cross rabbits of both sexes were allowed to free-run in constant darkness and then administered 1 h light pulses (1000 lux) at multiple predetermined circadian times. Changes in the phase of the rabbits’ circadian wheel-running rhythms were measured after each light pulse and used to construct a phase–response curve (PRC). The rabbits’ PRC and free-running period (τ) conformed to the empirical regularities reported for other predominantly nocturnal animals, including rodents and predatory marsupials. The results of the study are thus consistent with reports that the rabbit is essentially a nocturnal animal and show that it can entrain to light/dark (LD) cycles via discrete phase shifts. Knowledge about the rabbit’s circadian range of entrainment to LD cycles gained in this study will be useful for examining the putative circadian processes believed to underlie the unusual rhythm of very brief, once-daily nest visits by nursing rabbit mothers and other nursing lagomorphs.  相似文献   

8.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

9.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613–622, 2000)  相似文献   

10.
The freerunning period of circadian clocks in constant environmental conditions can be history-dependent, and one effect of entrainment of circadian clocks by light cycles is to cause long-lasting changes in the freerunning period that are termed after-effects. We have studied after-effects of entrainment to 22-h (LD 8:14) and 26-h (LD 8:18) light cycles in the cockroach Leucophaea maderae. We find that in cockroaches, the freerunning period of the locomotor activity rhythm, measured in constant darkness (DD), is 0.7h less after entrainment to T22 than after entrainment to T26. Induction of after-effects requires several days (>1 week) entrainment, and after induction, after-effects will persist in DD for over 40 days. Further after-effects are unaltered by phase-resetting of up to 12h caused by exposure to low-temperature pulses (7 degrees C) of 24 or 48h duration. After-effects also persist through re-entrainment for 2 weeks to 24-h light cycles. These results indicate that after-effects arise from stable changes in the circadian system that are likely to be independent of phase relationships among oscillators within the circadian system. We also show that entrainment to temperature cycles does not generate after-effects indicating that light may be unique in its ability to generate lasting changes in pacemaker period.  相似文献   

11.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6-9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6-9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

12.
The locomotor activity rhythm of the nocturnal field mouse Mus booduga was monitored under constant darkness (DD) and free-running periods (tau) were estimated. Following a free-run of about 15 days in DD, the animals were exposed to periodic light pulses (LPs) of various intensities (1 lux, 10 lux, 50 lux, 100 lux, and 1,000 lux) and 15 minutes duration for 65 days at intervals of 24 hours to investigate the influence of intensity of light on the phase-angle-difference (psi) between the onset of locomotor activity and the time of LP administration. The experimentally observed values of psi and tau for a LP of 1,000 lux intensity used for 15 minutes every 24 hr, showed a sigmoid shaped relationship with tau. This relationship was similar to that predicted based on the nonparametric model of entrainment, which uses the tau and the LP phase response curve (PRC) constructed using LP of similar duration and intensity. The functional nature of the relationship between psi and tau was not found to change significantly with increasing intensities of LP used to entrain the locomotor activity rhythm. However, psi was significantly modulated by the intensity of LP. These results suggest that the periodic sensitivity of the circadian pacemaker underlying the locomotor activity rhythm in the nocturnal field mouse M. booduga to LPs plays an important role in maintaining a characteristic psi with the zeitgeber and the psi changes in a light intensity-dependent manner.  相似文献   

13.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

14.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

15.
The free-running period (in darkness) of the locomotor activity rhythm in adult blow flies (Calliphora vicina) was temperature-compensated between 15 and 25 degrees C, showing Q(10) values between 0.98 and 1.04. Single steps-up (20 to 25 degrees C) or steps-down (20 to 15 degrees C) in temperature caused stable phase shifts of the activity rhythm, giving rise to temperature-step phase response curves (PRCs) with both advances and delays. Phase advances, however, were dominant for steps-up, and phase delays for steps-down; the two PRCs were almost "mirror images" of each other. Following protocols introduced by Zimmerman et al. [(1968) Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles, Journal of Insect Physiology, 14, 669-684] for the rhythm of pupal eclosion in Drosophila pseudoobscura, the steps-up and steps-down PRCs for C. vicina were used to compute a theoretical PRC for a 6 h low temperature pulse, and from this a theoretical steady-state phase relationship of the locomotor activity rhythm to a train of such pulses making up a temperature cycle (18 h at 20 degrees and 6 h at 15 degrees C).  相似文献   

16.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613-622, 2000)  相似文献   

17.
Summary Removal of the pineal gland modifies the entrainment behavior of house sparrows. Abnormal entrainment occurs in pinealectomized sparrows exposed to skeleton photoperiods (light cycles composed of 2 pulses of light per 24-h cycle). This abnormal entrainment depends upon the state of the locomotor activity (rhythmic or arrhythmic) before exposure to the light cycle, and upon the interval between the 2 pulses of light which constitute the skeleton photoperiod. The conditions that produce abnormal entrainment in pinealectomized birds are strongly correlated with those that produce 2 stable phases of entrainment to skeleton photoperiods in normal birds (bistability phenomenon). These results suggest that after pinealectomy, there remains a population of oscillators whose combined output is reflected in the locomotor activity of individual sparrows.Abbreviations LD 12 12 light-dark cycle with 12 h of light and 12 h of dark per 24-h cycle - CT circadian time  相似文献   

18.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment.  相似文献   

19.

Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light–dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  相似文献   

20.
Summary Bouts of induced wheel-running, 3 h long, accelerate the rate of re-entrainment of hamsters' activity rhythms to light-dark (LD) cycles that have been phase-advanced by 8 h (Mrosovsky and Salmon 1987). The bouts of running are given early in the first night of the new LD cycle, and by the second night the phase advance in activity onset already averages 7 h. Such large shifts contrast with the mean phase advance of <1 h at the peak of the phase response curve when hamsters in constant darkness (DD) experience 2-h pulses of induced activity (Reebs and Mrosovsky 1989). The present paper investigates pulse duration and light as possible causes for the discrepancy in shift amplitude between these two studies. In a first experiment, pulses of induced wheel-running 1 h, 3 h, or 5 h long were given at circadian times (CT) 6 and 22-2 to hamsters free-running in DD. Pulses given at CT 6 caused phase-advances of up to 2.8 h, whereas pulses at CT 22-2 resulted in delays of up to 1.0 h. Shifts after 3-h and 5-h pulses did not differ, but were larger than after 1-h pulses, and larger than after the 2-h pulses given in DD by Reebs and Mrosovsky (1989). Thus 3 h appears to be the minimum pulse duration necessary to obtain maximum phase-shifting effects. In a second experiment, the re-entrainment design of Mrosovsky and Salmon (1987) was repeated with the light portion of the shifted LD cycle eliminated. Hamsters exercised for 3 h phase-advanced 2.9 h on average (excluding 2 animals who ran poorly). When the same hamsters were exposed 7 days later to a 14-h light pulse starting 5 h after their activity onset, they advanced by an average of 3.3 h. Adding the average values for activity-induced shifts and light-induced shifts gives a total of about 6 h. Possible synergism between the effects of induced activity and those of light may account for the remaining small difference between this total and the 7-h advances previously reported.Abbreviations CT circadian time - DD constant darkness - LD light-dark - PRC phase response curve - free-running period of rhythm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号