首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Protein folding, binding, catalytic activity and molecular recognition all involve molecular movements, with varying extents. The molecular movements are brought upon via flexible regions. Stemming from sequence, a fine tuning of electrostatic and hydrophobic properties of the protein fold determine flexible and rigid regions. Studies show flexible regions usually lack electrostatic interactions, such as salt-bridges and hydrogen-bonds, while the rigid regions often have larger number of such electrostatic interactions. Protein flexible regions are not simply an outcome of looser packing or instability, rather they are evolutionally selected. In this review article we highlight the significance of protein flexibilities in folding, binding and function, and their structural and thermodynamic determinants. Our electrostatic calculations and molecular dynamic simulations on an antibody-antigen complex further illustrate the importance of protein flexibilities in binding and function.  相似文献   

3.
Proteins are dynamic creatures. Intrinsically disordered proteins (IDPs) function as multiplicity of structures and their activities can only be described by stochastic structure-function relationships. In their complex forms, however, IDPs were thought to lose their plasticity and behave similarly to globular proteins. Although various IDPs indeed fold upon binding, this view is not valid in general. IDPs usually interact with their partners via short motifs, which require malleable environments to function. Consequently, segments of IDPs could retain their disordered state in the complex, a phenomenon termed as fuzziness. Since its recognition, the number of structurally characterized fuzzy complexes, both with protein and DNA, rapidly increases. Here I review recent advances in our understanding of fuzziness. Four basic mechanisms are described how conformationally heterogeneous regions impact specificity or binding affinity of protein complexes. A novel allostery-model is proposed, where the regulatory site modulates the conformational equilibrium of the binding interface without adopting a unique structure. Protein-protein interactions, post-translational modifications or alternative splicing of the highly flexible/disordered regions offer further opportunities for regulation and expand the functional repertoire of fuzzy complexes.  相似文献   

4.
Escherichia coli single-stranded (ss)DNA binding (SSB) protein binds ssDNA in multiple binding modes and regulates many DNA processes via protein-protein interactions. Here, we present direct evidence for fluctuations between the two major modes of SSB binding, (SSB)(35) and (SSB)(65) formed on (dT)(70), with rates of interconversion on time scales that vary as much as 200-fold for a mere fourfold change in NaCl concentration. Such remarkable electrostatic effects allow only one of the two modes to be significantly populated outside a narrow range of salt concentration, providing a context for precise control of SSB function in cellular processes via SSB expression levels and interactions with other proteins. Deletion of the acidic C terminus of SSB, the site of binding of several proteins involved in DNA metabolism, does not affect the strong salt dependence, but shifts the equilibrium towards the highly cooperative (SSB)(35) mode, suggesting that interactions of proteins with the C terminus may regulate the binding mode transition and vice versa. Single molecule analysis further revealed a novel low abundance binding configuration and provides a direct demonstration that the SSB-ssDNA complex is a finely tuned assembly in dynamic equilibrium among several well-defined structural and functional states.  相似文献   

5.
6.
Expansion of DNA repeat sequences is associated with many human genetic diseases. Bulged DNA structures have been implicated as intermediates in DNA slippage within the DNA repeat regions. Herein a bulge binding agent with novel wedge-shape topology of the aromatic moiety was designed and synthesized. The compound-bulge DNA interactions were characterized via UV melting experiments, circular dichroism and were quantitated by surface plasmon resonance with K(d) of 41.5 microM. This compound showed remarkable stimulation for DNA triplet repeat strand slippage synthesis in vitro.  相似文献   

7.
8.
High-throughput chromatin immunoprecipitation has become the method of choice for identifying genomic regions bound by a protein. Such regions are then investigated for overrepresented sequence motifs, the assumption being that they must correspond to the binding specificity of the profiled protein. However this approach often fails: many bound regions do not contain the ‘expected’ motif. This is because binding DNA directly at its recognition site is not the only way the protein can cause the region to immunoprecipitate. Its binding specificity can change through association with different co-factors, it can bind DNA indirectly, through intermediaries, or even enforce its function through long-range chromosomal interactions. Conventional motif discovery methods, though largely capable of identifying overrepresented motifs from bound regions, lack the ability to characterize such diverse modes of protein–DNA binding and binding specificities. We present a novel Bayesian method that identifies distinct protein–DNA binding mechanisms without relying on any motif database. The method successfully identifies co-factors of proteins that do not bind DNA directly, such as mediator and p300. It also predicts literature-supported enhancer–promoter interactions. Even for well-studied direct-binding proteins, this method provides compelling evidence for previously uncharacterized dependencies within positions of binding sites, long-range chromosomal interactions and dimerization.  相似文献   

9.
10.
11.
12.
Zhu L  Hu J  Lin D  Whitson R  Itakura K  Chen Y 《Biochemistry》2001,40(31):9142-9150
Mrf-2 is a member of a new class of DNA-binding proteins known as the AT-rich interaction domain family or ARID. Chemical shift indices and characteristic NOE values indicate that the three-dimensional structure of the Mrf-2 ARID in complex with DNA is nearly identical to that of the free protein. The backbone dynamics of the Mrf-2 domain free and in complex with DNA have been characterized by (15)N NMR relaxation measurements and model-free analysis. Chemical shift perturbations and dynamic studies suggest that two flexible interhelical loops, the flexible C-terminal tail, and one alpha-helix are involved in DNA recognition, indicating the importance of protein dynamics in DNA binding. Some well-structured regions, in particular the putative DNA-contacting helix, in Mrf-2 show a decrease in the order parameters (S(2)) upon complex formation. The less well-structured loops and the unstructured C-terminus show reduced flexibility upon DNA binding. In addition, the model-free analysis indicates motions on the picosecond to nanosecond and micro- to millisecond time scales at the DNA-binding surface of the bound Mrf-2 ARID, suggesting a model where interactions between the protein and DNA are highly dynamic.  相似文献   

13.
14.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

15.
Sun Y  Friedman JI  Stivers JT 《Biochemistry》2011,50(49):10724-10731
The human DNA repair enzyme uracil DNA glycosylase (hUNG) locates and excises rare uracil bases that arise in DNA from cytosine deamination or through dUTP incorporation by DNA polymerases. Previous NMR studies of hUNG have revealed millisecond time scale dynamic transitions in the enzyme-nonspecific DNA complex, but not the free enzyme, that were ascribed to a reversible clamping motion of the enzyme as it scans along short regions of duplex DNA in its search for uracil. Here we further probe the properties of the nonspecific DNA binding surface of {(2)H(12)C}{(15)N}-labeled hUNG using a neutral chelate of a paramagnetic Gd(3+) cosolute (Gd(HP-DO3A)). Overall, the measured paramagnetic relaxation enhancements (PREs) on R(2) of the backbone amide protons for free hUNG and its DNA complex were in good agreement with those calculated based on their relative exposure observed in the crystal structures of both enzyme forms. However, the calculated PREs systematically underestimated the experimental PREs by large amounts in discrete regions implicated in DNA recognition and catalysis: active site loops involved in DNA recognition (268-274, 246-250), the uracil binding pocket (143-148, 169-170), a transient extrahelical base binding site (214-216), and a remote hinge region (129-132) implicated in dynamic clamping. These reactive hot spots were not correlated with structural, hydrophobic, or solvent exchange properties that might be common to these regions, leaving the possibility that the effects arise from dynamic sampling of exposed conformations that are distinct from the static structures. Consistent with this suggestion, the above regions have been previously shown to be flexible based on relaxation dispersion measurements and course-grained normal-mode analysis. A model is suggested where the intrinsic dynamic properties of these regions allows sampling of transient conformations where the backbone amide groups have greater average exposure to the cosolute as compared to the static structures. We conclude that PREs derived from the paramagnetic cosolute reveal dynamic hot spots in hUNG and that these regions are highly correlated with substrate binding and recognition.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号