首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel sugar-modified derivatives of cytostatic 7-hetaryl-7-deazaadenosines (2'-C-methylribonucleosides, 2'-deoxy-2'-fluoroarabinonucleosides, arabinonucleosides and 2'-deoxyribonucleosides) was prepared and screened for biological activity. The synthesis consisted of preparation of the corresponding sugar-modified 7-iodo-7-deazaadenine nucleosides and their aqueous-phase Suzuki-Miyaura cross-coupling reactions with (het)arylboronic acids or Stille couplings with hetarylstannanes in DMF. The synthesis of 7-iodo-7-deazaadenine nucleosides was based on a glycosidation of 6-chloro-7-iodo-7-deazapurine with a suitable sugar synthon or on an interconversion of 2'-OH stereocenter (for arabinonucleosides). Several examples of 2'-C-Me-ribonucleosides showed moderate anti-HCV activities in a replicon assay accompanied by cytotoxicity. Several 7-hetaryl-7-deazaadenine fluoroarabino- and arabinonucleosides exerted moderate micromolar cytostatic effects. The most active was 7-ethynyl-7-deazaadenine fluoroarabinonucleoside which showed submicromolar antiproliferative activity. However, all the sugar-modified derivatives were less active than the parent ribonucleosides.  相似文献   

2.
Thirty novel α- and β-d-2'-deoxy-2'-fluoro-2'-C-methyl-7-deazapurine nucleoside analogs were synthesized and evaluated for in vitro antiviral activity. Several α- and β-7-deazapurine nucleoside analogs exhibited modest anti-HCV activity and cytotoxicity. Four synthesized 7-deazapurine nucleoside phosphoramidate prodrugs (18-21) showed no anti-HCV activity, whereas the nucleoside triphosphates (22-24) demonstrated potent inhibitory effects against both wild-type and S282T mutant HCV polymerases. Cellular pharmacology studies in Huh-7 cells revealed that the 5'-triphosphates were not formed at significant levels from either the nucleoside or the phosphoramidate prodrugs, indicating that insufficient phosphorylation was responsible for the lack of anti-HCV activity. Evaluation of anti-HIV-1 activity revealed that an unusual α-form of 7-carbomethoxyvinyl substituted nucleoside (10) had good anti-HIV-1 activity (EC(50)=0.71±0.25 μM; EC(90)=9.5±3.3 μM) with no observed cytotoxicity up to 100 μM in four different cell lines.  相似文献   

3.
Purine analogs modified in the five-membered ring have been synthesized and examined for antibacterial activity against Mycobacterium tuberculosis H37Rv in vitro employing the microplate alamar blue assay (MABA). The 9-deaza analogs were only found to be weak inhibitors, but the 8-aza-, 7-deaza- and 8-aza-7-deazapurine analogs studied displayed excellent antimycobacterial activities, some even substantially better than the parent purine. In the 7-deazapurine series, MIC values between 0.08 and 0.35 μM, values comparable or better than the reference drugs used in the study (MIC rifampicin 0.09 μM, MIC isoniazid 0.28 μM and MIC PA-824 0.44 μM). The five most active compounds were also examined against a panel of drug-resistant Mtb strain, and they all retained their activity. The compounds examined were significantly less active against M. tuberculosis in a state of non-replicating persistence (NRP). MIC in the low-oxygen-recovery assay (LORA) ?60 μM. The 7-deazapurines were somewhat more toxic towards mammalian cells, but still the selectivity indexes were excellent. The non-purine analogs exhibit a selective antimycobacterial activity. They were essentially inactive against Staphylococcus aureus and Escherichia coli.  相似文献   

4.
Iridoid glycosides, 2′,3′,6′-tri-O-acetyl-4′-O-trans-p-(O-β-d-glucopyranosyl)coumaroyl-7-ketologanin (1), 2′-O-caffeoylloganic acid (2), 2′-O-p-hydroxybenzoylloganic acid (3), 2′-O-trans-p-coumaroylloganic acid (4), and 2′-O-cis-p-coumaroylloganic acid (5), were isolated from whole plants of Gentiana loureirii along with six known iridoids, 7-ketologanin (6), loganin (7), loganic acid (8), sweroside, boonein, and isoboonein, and three other known compounds. Their structures were elucidated by spectroscopic means and chemical correlations. The isolated iridoids were evaluated for antibacterial and antioxidant activities, but were either inactive or very weakly active.  相似文献   

5.
Myxococcus xanthus PdeA and PdeB, enzymes homologous to class III 3′,5′-cyclic nucleotide phosphodiesterases, hydrolyzed 3′,5′- and 2′,3′-cyclic AMP (cAMP) to adenosine, and also demonstrated phosphatase activity toward nucleoside 5′-tri-, 5′-di-, 5′- and 3′-monophosphates with highest activities for nucleoside 5′-monophosphates. The substrate specificities of PdeA and PdeB show no similarity to that of any known cNMP phosphodiesterase, nucleotidase, or phosphatase. The enzyme activities of PdeA and PdeB were stimulated by 50 μM Mn2+ or Co2+. The Km values of PdeA and PdeB for 3′,5′-cAMP, 2′,3′-cAMP, 5′-ATP, and 5′-AMP were in the low micromolar range (1.4-12.5  μM).  相似文献   

6.
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2′,3′,4′,5′,6′-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,2′,3′,4′,5′,6′-d6 and E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin-d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by σ-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.  相似文献   

7.
The first N,8′-coupled naphthylisoquinoline alkaloids with free phenolic OH groups, 4′-O-demethylancistrocladinium A and 6,4′-O-didemethylancistrocladinium A, have been isolated from the leaves and bark of the Vietnamese liana Ancistrocladus cochinchinensis, along with its known, non-phenolic parent compound, ancistrocladinium A, and four C,C-coupled representatives. The structure elucidation was achieved by chemical, spectroscopic, and chiroptical methods. The mono-phenolic alkaloid showed excellent activities in particular against the pathogen causing Chagas’ disease, Trypanosoma cruzi.  相似文献   

8.
Novel halogenated purines and pseudopurines with diverse aryl-substituted 1,2,3-triazoles were prepared. While p-(trifluoromethyl)-substituted 1,2,3-triazole in N-9 alkylated purine and 3-deazapurine was critical for strong albeit unselective activity on pancreatic adenocarcinoma cells CFPAC-1,1-(p-fluorophenyl)-1,2,3-triazole derivative of 7-deazapurine showed selective cytostatic effect on metastatic colon cancer cells SW620. Importantly, 1-(p-chlorophenyl)-1,2,3-triazole-tagged benzimidazole displayed the most pronounced and highly selective inhibitory effect in nM range on non-small cell lung cancer A549. This compound revealed to target molecular processes at the extracellular side and inside the plasma membrane regulated by GPLD1 and growth factor receptors PDGFR and IGF-1R leading to the inhibition of cell proliferation and induction of apoptosis mediated by p38 MAP kinase and NF-κB, respectively. Further optimisation of this compound as to reduce its toxicity in normal cells may lead to the development of novel agent effective against lung cancer.  相似文献   

9.
New Adefovir (PMEA) prodrugs with a pro-moiety consisting of decyl or decyloxyethyl chain bearing hydroxyl function(s), hexaethyleneglycol or a (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl unit were prepared starting from the tetrabutylammonium salt of the phosphonate drug and an appropriate alkyl bromide or tosylate. Analogously, two esters of Cidofovir [(S)-HPMPC] bearing a hexaethyleneglycol moiety were prepared. The activity of the prodrugs was evaluated in vitro against different virus families. A loss in the antiviral activities of the hydroxylated decyl or decyloxyethyl esters and hexaethyleneglycol esters of PMEA against human immunodeficiency virus (HIV) and herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (CMV)] occurred in comparison with the parent compound. On the other hand, the (5-methyl-2-oxo-1,3-dioxolen-4-yl)methyl ester of PMEA showed significant activities against HIV and herpesviruses. (S)-HPMPC prodrugs exhibited anti-cytomegalovirus activities in the same range as the parent drug, whereas the anti-HSV and anti-VZV activities were one- to seven-fold lower than that of Cidofovir.  相似文献   

10.
Hyper-pigmentation of the skin is a common problem that is prevalent in middle aged and elderly people. It is caused by over production of melanin. Tyrosinase is known to be the key enzyme in melanin production. Ethanolic extract of Greyia flanaganii leaves showed significant (P < 0.05) antityrosinase activity exhibiting the IC50 of 32.62 μg/ml. The total extract was further investigated for its toxicity and effect on melanin production by melanocytes cells, and showed significant inhibition (P < 0.05) (20%) of melanin production at 6.25 μg/ml and low levels of cytotoxicity (IC50 < 400 μg/ml). The amount of antioxidants necessary to decrease the initial DPPH absorbance by 50% (EC50) by the total ethanolic extract was found to be 22.01 μg/ml. The effect of G. flanaganii against acne causing bacteria, Propionibacterium acnes, was investigated using microdilution assay. The MIC of the extract of G. flanaganii was found to be 250 μg/ml. Bioassay-guided fractionation led to the isolation of (3S)-4-hydroxyphenethyl 3-hydroxy-5-phenylpentanoate (1), 2′,4′,6′-trihydroxydihydrochalcone (2), 2′,6′,4-trihydroxy-4′-methoxydihydrochalcone (3), 2′,6′-dihydroxy-4′-methoxydihydrochalcone (4), 5,7-dihydroxyflavanone [(2S)-pinocembrin] (5), 2′,6′-dihydroxy-4′,4-dimethoxy dihydrochalcone (6) and (2R,3R)-3,5,7-trihydroxy-3-O-acetylflavanone (7). The isolated compounds were tested for their antioxidant, cytotoxicity, tyrosinase inhibition and antibacterial activities. Compound 2 exhibited significant (P < 0.05) antityrosinase activity exhibiting the IC50 of 69.15 μM. The isolated compounds showed low toxicity of the cells with reduction of melanin content of the cells. All compounds tested showed good radical scavenging activity. These data indicates that G. flanaganii extract and its isolated phenolic constituents could be possible skin lightening agents.  相似文献   

11.
Antibody-directed enzyme prodrug therapy (ADEPT) may improve the therapeutic index of cytostatic agents. We compared two prodrugs, epirubicin-glucuronide (Epi-glu) and doxorubicin-spacer-glucuronide (Dox-sp-glu), for their cytotoxicity on activation by a monoclonal antibody-enzyme conjugate bound to tumor cells. The results showed that the prodrugs were 10 (Dox-sp-glu) and 100 (Epi-glu) times less toxic than the parent drugs against OVCAR-3 cells. This difference was a result of the hydrophilic property of the prodrugs resulting in a reduced cellular uptake. The enzyme-catalyzed hydrolysis of Dox-sp-glu byE. coli-derived β-glucuronidase (GUS) (K m 500 μM,V max 21,000 μmol/min/g) was much more efficient than that of Epi-glu (K m 10 μM,V max 40 μmol/min/g). Incubation of OVCAR-3 cells with an enzyme-immunoconjugate prepared from monoclonal antibody 323/A3 andE. coli-derived GUS before treatment with prodrugs completely restored the cytotoxicity of the prodrugs to the level of the parent drugs.  相似文献   

12.
7-Geranyloxycoumarin, marmin, 6′-dehydromarmin, geiparvarin, 2′,3′-dihydrogeiparvarin and flindersine have been found in the extracts of the fruit of Geijera parviflora Lindl. (Rutaceae). The acetone ketal of marmin was also obtained and is regarded as an artifact of the isolation procedure. Peracid oxidation of 7-geranyloxycoumarin gave exclusively its 6′,7′-epoxide.  相似文献   

13.
The new ligand 4′-(4?-pyridyl-N-oxide)-2,2′:6′,2″-terpyridine (pyNoxterpy) and its homoleptic iron(II) complex have been synthesised, and structural and spectroscopic studies have been carried out. The obtained results have been compared with the reported data for the parent ligand 4′-(4?-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) and its homoleptic iron(II) complex. Significant differences between the spectral and electrochemical properties of the metal complexes have been found, derived from the changes in the electronic properties of the coordinated ligands.  相似文献   

14.
The methanol extract from the stem bark of Terminalia superba (TSB), fractions (TSB1–7) and two compounds isolated following bio-assay guided fractionation namely 3,4′-di-O-methylellagic acid 3′-O-β-d-xylopyranoside (1) and 4′-O-galloy-3,3′-di-O-methylellagic acid 4-O-β-d-xylopyranoside (2) were evaluated for their antimycobacterial, antibacterial and antifungal activities. The broth microdilution, the microplate Alamar Blue assay (MABA) and the agar disc diffusion methods were used for the investigations. The results of the antimycobacterial assays showed that the crude extract, fractions TSB5–7 and compound 1 were able to prevent the growth of all the studied mycobacteria. The lowest minimal inhibitory concentration (MIC) value of 39.06 µg/ml for this extract was recorded on both M. smegmatis and M. tuberculosis MTCS2. The corresponding values were 19.53 µg/ml and 4.88 µg/ml for fractions and compounds respectively. The MIC determination results on other organisms indicated values ranging from 19.53 to 78.12 µg/ml for TSB and compound 2 on 90.9% of the tested organisms, meanwhile compound 1 as well as fractions TSB 6 and 7 exhibited detectable MIC values on all studied microorganisms. The overall results provide promising baseline information for the potential use of the crude extract from T. superba, fractions 6–7 and the tested compounds in the treatment of tuberculosis, bacterial and fungal infections.  相似文献   

15.
One of the main problems in combating tuberculosis is caused by a poor penetration of drugs into the mycobacterial cells. A prodrug approach via activation inside mycobacterial cells is a possible strategy to overcome this hurdle and achieve efficient drug uptake. Esters are attractive candidates for such a strategy and we and others communicated previously the activity of esters of weak organic acids against mycobacteria. However very little is known about ester hydrolysis by mycobacteria and no biological model is available to study the activation of prodrugs by these microorganisms. To begin filling this gap, we have embarked in a project to develop an in vitro method to study prodrug activation by mycobacteria using Mycobacterium smegmatis homogenates. Model ester substrates were ethyl nicotinate and ethyl benzoate whose hydrolysis was monitored and characterized kinetically. Our studies showed that in M. smegmatis most esterase activity is associated with the soluble fraction (cytosol) and is preserved by storage at 5 °C or at room temperature for one hour, or by storage at − 80 °C up to one year. In the range of homogenate concentrations studied (5-80% in buffer), kobs varied linearly with homogenate concentration for both substrates. We also found that the homogenates showed Michaelis-Menten kinetics behavior with both prodrugs. Since ethyl benzoate is a good substrate for the mycobacterial esterases, this compound can be used to standardize the esterasic activity of homogenates, allowing results of incubations of prodrugs with homogenates from different batches to be readily compared.  相似文献   

16.
The ethanol extract from the dried exudate of Bursera fagaroides (Burseraceae) showed significant cytotoxic activity in the HT-29 (human colon adenocarcinoma) test system. The extract provided four podophyllotoxin related lignans, identified as (7′R,8R,8′R)-(−)-deoxypodophyllotoxin (3), (7′R,8R,8′R)-(−)-morelensin (4), (8R,8′R)-(−)-yatein (5), and (8R,8′R)-(−)-5′-desmethoxyyatein (6), whose spectroscopic and chiroptical properties were compared with those of (7R,7′R,8R,8′R)-(−)-podophyllotoxin (1) and its acetyl derivative (2). Their absolute configurations were assigned by comparison of the vibrational circular dichroism spectra of 1 and 3 with those obtained by density functional theory calculations.  相似文献   

17.
Tapirira guianensis is a common tree used in traditional medicine in French Guiana against several infectious diseases (malaria, leishmaniasis, bacteria, etc.). The bioassay-guided purification of CH2Cl2 bark extract led to the isolation of four cyclic alkyl polyol derivatives: 4,6,2′-trihydroxy-6-[10′(Z)-heptadecenyl]-1-cyclohexen-2-one (1a), 1,4,6-trihydroxy-1,2′-epoxy-6-[10′(Z)-heptadecenyl]-2-cyclohexene (1b), 1,4,5,2′-tetrahydroxy-1-[10′(Z)-heptadecenyl]-2-cyclohexene (2), and 1,3,4,6-tetrahydroxy-1,2′-epoxy-6-[10′(Z)-heptadecenyl]-cyclohexane (3). The structures were established on the basis of 1D and 2D NMR analyses. The anti-leishmanial, anti-plasmodial, anti-bacterial (on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli), and anti-fungal (on Candida albicans) activities of the extracts and of these original compounds were evaluated. Two showed medicinal interest supporting the traditional uses of the plant. The structures were established through spectral analyses of the isolates and their derivatives.  相似文献   

18.
The mRNA-capping process starts with the conversion of a 5′-triphosphate end into a 5′-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5′-5′ phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2′OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2′O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, N7MeGpppG, and N7MeGpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2′O-methyltransferase activities.  相似文献   

19.
Selective disruption of wheat secondary metabolism by herbicide safeners   总被引:2,自引:0,他引:2  
In wheat (Triticum aestivum L.), treatment with herbicide safeners enhances the expression of enzymes involved in pesticide detoxification and reduces crop sensitivity to herbicides. Since these same enzymes are involved in plant secondary metabolism, it was of interest to determine whether or not the safener cloquintocet mexyl perturbed phenolic metabolism in wheat seedlings. LC/ESI/MS analysis identified 14 phenolic substrates in the shoots of young wheat plants. Fragmentation imposed by collision induced dissociation identified specific C-glycosidic conjugates of 4′,5,7-trihydroxflavone (apigenin), 3′,4′,5,7-tetrahydroxyflavone (luteolin) and 3′-O-methylluteolin. Treatment of 7-day-old wheat shoots with cloquintocet mexyl resulted in an accelerated depletion of the conjugates of all three flavones, most notably with the glycosides of luteolin. In contrast, safener treatment caused the selective accumulation of 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone (tricin) and the phenylpropanoid ferulic acid. Changes in phenolic content were associated with an increase in O-methyltransferase and C-glucosyltransferase activity toward flavonoid substrates as well as the classic enhancement of detoxifying glutathione transferases. Our results suggest that in addition to altering the capacity of wheat to metabolise herbicides and other xenobiotics, safeners can also cause a selective shift in the metabolism of endogenous phenolics.  相似文献   

20.
N,N′-Dialkylaminoalkylcarbonyl (DAAC) and aminoalkylcarbonyl (AAC) prodrugs of phenolic drugs acetaminophen (APAP) and naltrexone (NTX) are reported. The effects of incorporation of a basic amine group into the promoiety of an acyl prodrug of a phenolic drug on its skin permeation properties are also presented. DAAC-APAP prodrugs were synthesized via a three-step procedure starting with haloalkylcarbonyl esters which were reacted with five different amines: dimethylamine, diethylamine, dipropylamine, morpholine, and piperidine. The spacing between the amino group and the carbonyl group of the acyl group was 1-3 CH2. After the hydrolysis of the ester, the carboxylic acid product was subsequently coupled with the parent drug via a dicyclohexyl carbodiimide (DCC) mediated coupling to yield the DAAC-APAP-HCl prodrugs in excellent yields. The AAC prodrugs were synthesized using commercially available Boc-protected amino acids using DCC or EDCI as coupling agents. The yields of the prodrugs synthesized using these two different methods have been compared. Half-lives (t1/2) of a few members of the DAAC and AAC series were measured in buffer (pH 6.0, 20 mM). The members evaluated in hydrolysis experiments exhibit a t1/2 range of 15-113 min. Among AAC-APAP prodrugs, the isopropyl group in valinate-APAP-HCl exerted a steric effect that increased the t1/2 value for this prodrug compared to alaninate-APAP-HCl or prolinate-APAP-HCl. The 2-morpholinylacetate-APAP prodrug was able to achieve twice the flux of APAP in in vitro diffusion cell experiments through hairless mouse skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号