共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoylation is the post‐translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate‐Histidine‐Histidine‐Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl‐transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont‐expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite‐specific organelles such as the rhoptries and inner membrane complex. Knock‐out studies identified individual DHHCs that may be essential for blood‐stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood‐stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission‐blocking target. The localization and stage‐specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development. 相似文献
2.
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns. 相似文献
3.
Protein palmitoylation is a reversible lipid modification that plays critical roles in protein sorting and targeting to specific cellular compartments. The neuronal microtubule-regulatory phosphoproteins of the stathmin family (SCG10/stathmin 2, SCLIP/stathmin 3, and RB3/stathmin 4) are peripheral proteins that fulfill specific and complementary roles in the formation and maturation of the nervous system. All neuronal stathmins are localized at the Golgi complex and at vesicles along axons and dendrites. Their membrane anchoring results from palmitoylation of two close cysteine residues present within their homologous N-terminal targeting domains. By preventing palmitoylation with 2-bromopalmitate or disrupting the integrity of the Golgi with brefeldin A, we were able to show that palmitoylation of stathmins 2 and 3 likely occurs at the Golgi and is crucial for their specific subcellular localization and trafficking. In addition, this membrane binding is promoted by a specific set of palmitoyl transferases that localize with stathmins 2 and 3 at the Golgi, directly interact with them, and enhance their membrane association. The subcellular membrane-associated microtubule-regulatory activity of stathmins might then be fine-tuned by extracellular stimuli controlling their reversible palmitoylation, which can be viewed as a crucial regulatory process for specific and local functions of stathmins in neurons. 相似文献
5.
Semicarbazide-sensitive amine oxidases (SSAO) are widely distributed enzymes, with as yet not fully elucidated functions and roles, present in many tissues but also circulating in plasma. The enzyme also functions as an adhesion molecule, the vascular adhesion protein-1. In healthy humans, plasma SSAO activity is constant from birth until 16 years of age, when it drops to lower values, gradually increasing again at advanced ages. When measuring SSAO activity, care should be taken to ensure proper preparation and storage conditions, and it should be realized that quite a few drugs unintentionally are good inhibitors, and sometimes even substrates, of SSAO. Under normal conditions SSAO activity is constant and inter-individual variation is small. In various pathophysiological conditions plasma SSAO activities are increased, most notably in diabetes mellitus (both type I and type II), in congestive heart failure and in cirrhotic liver inflammation. In patients with other vascular and inflammatory diseases plasma SSAO is normal, while it is low in children with congenital lung diseases. Interpretation of these changes is speculative, since source and regulation of plasma SSAO are as yet unknown. However, in two situations where the disease-causing process was ended (transplantation, delivery), plasma SSAO returned to normal. Many questions remain to be answered. 相似文献
6.
AbstractPalmitoylation is required for the activities of several cancer-associated proteins, making the palmitoyl acyltransferase (PAT) enzymes that catalyze these reactions potential targets for anticancer therapeutics. In this study, we sought to identify and characterize a human PAT with activity toward N-terminally myristoylated and palmitoylated proteins. NIH/3t3 cells were stably transfected with vectors containing no insert, wild type human DHHC20, or a serine-substituted DHHS20 mutant. Compared with control cells, cells overexpressing wild-type DHHC20 displayed an increase in palmitoylation activity toward a peptide that mimics the N-terminus of myristoylated and palmitoylated proteins, but had no change in activity toward a peptide that mimics the C-terminus of farnesylated and palmitoylated proteins. Cells expressing DHHS20 had no significant change in activity toward either peptide. Overexpression of DHHC20 also caused phenotypic changes consistent with cellular transformation, including colony formation in soft agar, decreased contact inhibition of growth, and increased proliferation under low-serum conditions. Quantitative polymerase chain reaction analyses of human tissues demonstrated that DHHC20 is expressed in a tissue-specific manner, and is overexpressed in several types of human tumors, including ovarian, breast and prostate. Overall, these results demonstrate that DHHC20 is a human N-terminal-myristoyl-directed PAT involved in cellular transformation, that may play a role in cancer. 相似文献
7.
Most textbook knowledge on ventricular repolarization is based on animal data rather than on data from the in vivo human heart. Yet, these data have been extrapolated to the human heart, often without an appropriate caveat. Here, we review multiple aspects of repolarization, from basic membrane currents to cellular aspects including extrinsic factors such as the effects of the sympathetic nervous system. We critically discuss some mechanistic aspects of the genesis of the T-wave of the ECG in the human heart. Obviously, the T-wave results from the summation of repolarization all over the heart. The T-wave in a local electrogram ideally reflects local repolarization. The repolarization moment is composed of the moment of local activation plus local action potential duration (APD) at 90% repolarization (APD90). The duration of the latter largely depends on the balance between L-type Ca2+ current and the delayed rectifier currents. Generally speaking, there is an inverse relationship between local activation time and local APD90, leading to less dispersion in repolarization moments than in activation moments or in APD90. In transmural direction, the time needed for activation from endocardium toward epicardium has been considered to be overcompensated by shorter APD90 at the epicardium, leading to the earliest repolarization at the subepicardium. In addition, mid-myocardial cells would display the latest repolarization moments. The sparse human data available, however, do not show any transmural dispersion in repolarization moment. Also, the effect of adrenergic stimulation on APD90 has been studied mainly in animals. Again, sparse human data suggest that the effect of adrenergic stimulation is different in the human heart compared to many other mammalian hearts. Finally, aspects of the long QT syndrome are discussed, because this intrinsic genetic disease results from repolarization disorders with extrinsic aspects. 相似文献
8.
Most textbook knowledge on ventricular repolarization is based on animal data rather than on data from the in vivo human heart. Yet, these data have been extrapolated to the human heart, often without an appropriate caveat. Here, we review multiple aspects of repolarization, from basic membrane currents to cellular aspects including extrinsic factors such as the effects of the sympathetic nervous system. We critically discuss some mechanistic aspects of the genesis of the T-wave of the ECG in the human heart.Obviously, the T-wave results from the summation of repolarization all over the heart. The T-wave in a local electrogram ideally reflects local repolarization. The repolarization moment is composed of the moment of local activation plus local action potential duration (APD) at 90% repolarization (APD 90). The duration of the latter largely depends on the balance between L-type Ca 2+ current and the delayed rectifier currents. Generally speaking, there is an inverse relationship between local activation time and local APD 90, leading to less dispersion in repolarization moments than in activation moments or in APD 90. In transmural direction, the time needed for activation from endocardium toward epicardium has been considered to be overcompensated by shorter APD 90 at the epicardium, leading to the earliest repolarization at the subepicardium. In addition, mid-myocardial cells would display the latest repolarization moments. The sparse human data available, however, do not show any transmural dispersion in repolarization moment. Also, the effect of adrenergic stimulation on APD 90 has been studied mainly in animals. Again, sparse human data suggest that the effect of adrenergic stimulation is different in the human heart compared to many other mammalian hearts. Finally, aspects of the long QT syndrome are discussed, because this intrinsic genetic disease results from repolarization disorders with extrinsic aspects. 相似文献
9.
Intracellular palmitoylation dynamics are regulated by a large family of DHHC (Asp-His-His-Cys) palmitoyl transferases. The majority of DHHC proteins associate with endoplasmic reticulum (ER) or Golgi membranes, but an interesting exception is DHHC2, which localizes to dendritic vesicles of unknown origin in neurons, where it regulates dynamic palmitoylation of PSD95. Dendritic targeting of newly synthesized PSD95 is likely preceded by palmitoylation on Golgi membranes by DHHC3 and/or DHHC15. The precise intracellular distribution of DHHC2 is presently unclear, and there is very little known in general about how DHHC proteins achieve their respective localizations. In this study, membrane targeting of DHHC2 in live and fixed neuroendocrine cells was investigated and mutational analysis employed to define regions of DHHC2 that regulate targeting. We report that DHHC2 associates with the plasma membrane, Rab11-positive recycling endosomes, and vesicular structures. Plasma membrane integration of DHHC2 was confirmed by labeling of an extrafacial HA epitope in nonpermeabilized cells. Antibody-uptake experiments suggested that DHHC2 traffics between the plasma membrane and intracellular membranes. This dynamic localization was confirmed using fluorescence recovery after photo-bleaching analysis, which revealed constitutive refilling of the recycling endosome (RE) pool of DHHC2. The cytoplasmic C-terminus of DHHC2 regulates membrane targeting and a mutant lacking this domain was associated with the ER. Although DHHC2 is closely related to DHHC15, these proteins populate distinct membrane compartments. Construction of chimeric DHHC2/DHHC15 proteins revealed that this difference in localization is a consequence of divergent sequences within their C-terminal tails. This study is the first to highlight dynamic cycling of a mammalian DHHC protein between clearly defined membrane compartments, and to identify domains that specify membrane targeting of this protein family. 相似文献
11.
BackgroundThe cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. Scope of reviewThe review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. Major conclusionsAll the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca 2 + channels in skeletal and cardiac muscle. General significanceIn addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione. 相似文献
12.
In thrombus formation associated with hemostasis or thrombotic disease, blood platelets first undergo a rapid transition from a circulating state to an adherent state, followed by activation and aggregation. Under flow conditions in the bloodstream, this process potentially involves platelet-platelet, platelet-endothelium, platelet-subendothelial matrix, and platelet-leukocyte interactions. Specific adhesion receptors on platelets mediate these interactions, by engaging counter-receptors on other cells, or noncellular ligands in the plasma or matrix. The glycoprotein (GP) Ib-IX-V complex on platelets initiates adhesion at high shear stress by binding the adhesive ligand, von Willebrand Factor (vWF). GP Ib-IX-V may also mediate platelet-endothelium or platelet-leukocyte adhesion, by recognition of P-selectin or Mac-1, respectively. Other membrane glycoproteins, such as the collagen receptor GP VI, may trigger platelet activation at low shear rates. Engagement of GP Ib-IX-V or GP VI leads ultimately to platelet aggregation mediated by the integrin, alphaIIbbeta3 (GP IIb-IIIa). This review will focus on recent advances in understanding structure-activity relationships of GP Ib-IX-V, its role in initiating thrombus formation, and its emerging relationships with other vascular cell adhesion receptors. 相似文献
13.
Protein palmitoylation is the post-translational addition of the 16-carbon fatty acid palmitate to specific cysteine residues by a labile thioester linkage. Palmitoylation is mediated by a family of at least 23 palmitoyl acyltransferases (PATs) characterized by an Asp-His-His-Cys (DHHC) motif. Many palmitoylated proteins have been identified, but PAT-substrate relationships are mostly unknown. Here we present a method called palmitoyl-cysteine isolation capture and analysis (or PICA) to identify PAT-substrate relationships in a living vertebrate system and demonstrate its effectiveness by identifying CKAP4/p63 as a substrate of DHHC2, a putative tumor suppressor. 相似文献
15.
A new approach for the elicitation of metal-dependent catalytic antibodies for ester hydrolysis is described. A coordinatively unsaturated mercury complex 1-(Hg), has been utilized as a hapten to elicit antibodies that incorporate mercury(II) as a Lewis acid cofactor. From a panel of monoclonal antibodies generated to 1-(Hg), antibody 38G2 was found to hydrolyze the ester 3 in the presence of HgCl(2) [K(m)app(3)=345 microM; K(m)app(Hg(2+))=87 microM; k(cat)app/k(uncat)=3 x 10(2)]. This is the first example of a biocatalyst that enlists mercuric ion as a cofactor and it is anticipated that this approach will open new avenues for exploitation of metals thought previously beyond the scope of protein catalysts. 相似文献
17.
Endothelial monocyte-activating polypeptide-II (EMAP-II) is a pro-inflammatory cytokine with anti-angiogenic properties. Its precursor, proEMAP, is identical to the p43 auxiliary component of the tRNA multisynthetase complex and therefore involved in protein translation. Although most of the activities have been ascribed to the active form EMAP-II, also p43 has reported cytokine properties. ProEMAP/p43 and EMAP-II act on many levels and on many cell types including endothelial cells, immune cells and fibroblasts. In this review we summarize all available data on isolation, expression and functions of EMAP-II both in physiological processes as well as in pathological settings, like cancer. We also discuss the different reported mechanisms for processing of proEMAP/p43 into EMAP-II. Finally, we speculate on the possible applications of this cytokine for (cancer) therapy. 相似文献
18.
The aliphatic polyamines, putrescine, spermidine and spermine, are normal cell constituents that play important roles in cell proliferation and differentiation. The equilibrium between cellular uptake and release and the balanced activities of biosynthetic and catabolic enzymes of polyamines are essential for normal homeostasis in the proliferation and functions of cells and tissues. However, the intracellular polyamine content increases in hyperplastic or neoplastic growth. Although the involvement of polyamines in physiological and pathological cell proliferation and differentiation has been well established, the role they play is quite different in relation to cell systems and animal models and is dependent on inducer agents and stimuli. Also, the experimental procedures used to deplete polyamines have been shown to influence the cell responses. In this paper, the assay methods currently in use for polyamines are reviewed and compared with respect to sensitivity, reproducibility and applicability to routine analysis. The relevance of polyamine metabolism and the uptake/release process in many physiological and pathological processes is highlighted, and the cellular polyamine pathways are discussed in relation to the possible diagnostic and therapeutic significance of these mediators. 相似文献
19.
Functional interrelationships between the acyl transferases of yeast fatty acid synthetase were investigated. In binding assays with synthetase modified by 5,5'-dithiobis(2-nitrobenzoic acid), 4--5 malonyl transferase entities per multienzyme complex molecule could be titrated. In the presence of palmitoyl-CoA these malonyl transferases were found inaccessible to malonyl-CoA, whereas the acetyl transferases were reactive towards acetyl-CoA. Between four and five palmitoyl transferase entities per synthetase equivalent were found reactive towards palmitoyl-CoA, the palmitoyl binding being inhibited by malonyl-CoA. Following palmitoyl binding the acetyl transferases were found towards acetyl-CoA. Substrate model assays were consistent with these data. It is concluded that malonyl and palmitoyl transferases are closely coupled enzyme components of the multienzyme complex which are fairly independent of the acetyl transferase entities. The molecular basis for the observed coupling will be given in the following paper. 相似文献
20.
Insulin receptor substrate (IRS) proteins play a central role in insulin signaling. Previously we have demonstrated that insulin is essential for normal skin development and function. In the present study we investigated the involvement of the IRS-1 and IRS-2 proteins in skin physiology and in mediating insulin action in skin. For this purpose we have investigated the effects of inactivation of each of the IRSs on skin, studying skin sections and primary skin cells derived from IRS-1 or IRS-2 null mice. We have demonstrated that while the skin of the IRS-2 null mice appeared normal, the skin of the IRS-1 null mice was thinner and translucent. Histological analysis revealed that the thinning of the IRS-1 null skin was a consequence of the thinning of the spinous compartment, consisting of fewer layers. Proliferation of the IRS-1 and IRS-2 null skin epidermal cells was normal. However, the differentiation process of the IRS-1 skin and skin cells was impaired. There was a marked decrease in the induction of the expression of K1, the marker of advanced stages of skin differentiation. In contrary, IRS-2 inactivation had no effects on skin differentiation. In conclusion, we have shown for the first time that IRS-1 but not IRS-2 has an effect on skin formation and development, being one of the main activators of the differentiation process in skin keratinocytes. Furthermore, we suggest that IRS-1 and IRS-2 have distinct roles in skin physiology. 相似文献
|