首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Employing the whole-genome PCR technique, intermediate filaments (IFs) reconstituted from vimentin, desmin, and glial fibrillary acidic protein were shown to select repetitive and mobile DNA sequence elements from a mixture of mouse genomic DNA fragments. The bound fragments included major and minor satellite DNA, telomere DNA, minisatellites, microsatellites, short and long interspersed nucleotide elements (SINEs and LINEs), A-type particle elements, members of the mammalian retrotransposon-like (MaLR) family, and a series of repeats not assignable to major repetitive DNA families. The latter sequences were either similar to flanking regions of genes; possessed recombinogenic elements such as polypurine/polypyrimidine stretches, GT-rich arrays, or GGNNGG signals; or were characterized by the distribution of oligopurine and pyrimidine motifs whose sequential and vertical alignment resulted in patterns indicative of high recombination potentials of the respective sequences. The different IF species exhibited distinct quantitative differences in DNA selectivities. Complexes consisting of vimentin IFs and DNA fragments containing LINE, (GT)(n) microsatellite, and major satellite DNA sequences were saturable and dynamic and were formed with high efficiency only when the DNAs were partially denatured. The major-groove binder methyl green exerted a stronger inhibitory effect on the binding reaction than did the minor-groove binder distamycin A; the effects of the two compounds were additive. In addition, DNA footprinting studies revealed significant configurational changes in the DNA fragments on interaction with vimentin IFs. In the case of major satellite DNA, vimentin IFs provided protection of the T-rich strand from cleavage by DNase I, whereas the A-rich strand was totally degraded. Taken together, these observations suggest that IF protein(s) bind to double-stranded DNAs at existing single-stranded sites and, taking advantage of their helix-destabilizing potential, further unwind them via a cooperative effort of their N-terminal DNA-binding regions. A comparison of the present results with literature data, as well as a search in the NCBI database, showed that IF proteins are related to nuclear matrix attachment region (MAR)-binding proteins, and the DNA sequences they interact with are very similar or even identical to those involved in a plethora of DNA recombination and related repair events. On the basis of these comparisons, IF proteins are proposed to contribute in a global fashion, not only to genetic diversity, but also to genomic integrity, in addition to their role in gene expression.  相似文献   

5.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

6.
Telomeres are the specialized structures at the end of linear chromosomes and terminate with a single-stranded 3' overhang of the G-rich strand. The primary role of telomeres is to protect chromosome ends from recombination and fusion and from being recognized as broken DNA ends. This protective function can be achieved through association with specific telomere-binding proteins. Although proteins that bind single-stranded G-rich overhang regulate telomere length and telomerase activity in mammals and lower eukaryotes, equivalent factors have yet to be identified in plants. Here we have identified proteins capable of interacting with the G-rich single-stranded telomeric repeat from the Arabidopsis extracts by affinity chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis indicates that the isolated protein is a chloroplast RNA-binding protein (and a truncated derivative). The truncated derivative, which we refer to as STEP1 (single-stranded telomere-binding protein 1), binds specifically the single-stranded G-rich plant telomeric DNA sequences but not double-stranded telomeric DNA. Unlike the chloroplast-localized full-length RNA-binding protein, STEP1 localizes exclusively to the nucleus, suggesting that it plays a role in plant telomere biogenesis. We also demonstrated that the specific binding of STEP1 to single-stranded telomeric DNA inhibits telomerase-mediated telomere extension. The evidence presented here suggests that STEP1 is a telomere-end binding protein that may contribute to telomere length regulation by capping the ends of chromosomes and thereby repressing telomerase activity in plants.  相似文献   

7.
Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening.  相似文献   

8.
RecA protein first forms filament on single-stranded (ss) DNA forming the first DNA-binding site for interaction with this ssDNA a formation of the second site for interaction with double-stranded DNA occurs in parallel. Then the formed nucleoprotein filament interacts with molecules of double-stranded (ds) DNA but can also recognize ssDNA. The formed complex realizes a search of homology and exchange of homologous strands. We have studied recently the mechanism of RecA filamentation on ssDNA. Here a study of interaction of different DNAs with the second site of RecA filament using a method of stepwise increase of the ligand complicity was performed. The second site under recognition interacts with every nucleotide units of DNA-ligand forming contact with both internucleotide phosphate groups and bases of DNA. Pyrimidinic d(pC)n [Russian character: see text d(pT)n oligonucleotides interact with the second site of the RecA filament more effectively than with d(pA)n oligonucleotides. This occurs due to a more effective interaction of the RecA filament with 5'-terminal unit of pyrimidinic DNAs and to a difference in specific conformational changes of nucleoprotein filaments in the complex with purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition by the first and the second sites of DNA recognition is carried out. It was shown that at n >10 d(pC)n d(pN)n interact with the second site weaker, that with the first site. The complexation of the second site with d(pA)n at n >20 is more effective than with the first site. The difference in the affinity of d(pA)n to the fist and second sites is increased monotonically with the enhancement of their length. Possible mechanisms of RecA-dependent search of homology and strand exchange are discussed.  相似文献   

9.
10.
Apoptotic-like events could be rapidly induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) in cells of the mouse plasmacytoma cell line MPC-11 grown in serum-free medium. Indicators for apoptosis were morphological changes visualized by light and electron microscopy, such as chromatin condensation and the formation of cellular buds and fragments, as well as biochemical indices like the appearance of the so-called ‘DNA ladder’. Additionally, in these cells which are usually devoid of significant amounts of cytoplasmic intermediate filament (cIF) proteins, synthesis and accumulation of the cIF protein vimentin was rapidly induced by TPA treatment and almost all cells became vimentin-positive. Later on, substantial amounts of vimentin and lamin B degradation products appeared, and an increasing fraction of cells displayed low or even undetectable quantities of intact vimentin. This subpopulation was characterized via microscopy to be in the late stages of apoptosis. We suggest that in MPC-11 cells undergoing apoptosis in response to TPA treatment vimentin as well as lamin B are degraded, leading to a rearrangement and eventual loss of their respective filament networks.  相似文献   

11.
Many proteins involved in DNA repair systems interact with DNA that has structure altered from the typical B-form helix. Using magnetic beads to immobilize DNAs containing various types of structures, we evaluated the in vitro binding activities of two well-characterized DNA repair proteins, Escherichia coli MutS and human p53. E. coli MutS bound to double-stranded DNAs, with higher affinity for a G/T mismatch compared to a G/A mismatch and highest affinity for larger non-B-DNA structures. E. coli MutS bound best to DNA between pH 6 and 9. Experiments discriminated between modes of p53–DNA binding, and increasing ionic strength reduced p53 binding to nonspecific double-stranded DNA, but had minor effects on binding to consensus response sequences or single-stranded DNA. Compared to nonspecific DNA sequences, p53 bound with a higher affinity to mismatches and base insertions, while binding to various hairpin structures was similar to that observed to its consensus DNA sequence. For hairpins containing CTG repeats, the extent of p53 binding was proportional to the size of the repeat. In summary, using the flexibility of the magnetic bead separation assay we demonstrate that pH and ionic strength influence the binding of two DNA repair proteins to a variety of DNA structures.  相似文献   

12.
13.
Unusual DNA structures involving four guanines in a planar formation (guanine tetrads) are formed by guanine-rich (G-rich) telomere DNA and other G-rich sequences (reviewed in (1)) and may be important in the structure and function of telomeres. These structures result from intrastrand and/or interstrand Hoogsteen base pairs between the guanines. We used the telomeric repeat of Chlamydomonas reinhardtii, TTTTAGGG, which contains 3 guanines and has a long interguanine A + T tract, to determine whether these sequences can form intrastrand and interstrand guanine tetrads. We have found that ss (TTTTAGGG)4 can form intrastrand guanine tetrads that are less stable than those formed by more G-rich telomere sequences. They are not only more stable, but also more compact, they are more stable in the presence of K+ than they are in the presence of Na+. While ds oligonucleotides with ss 3' overhangs of (TTTTAGGG)2 can be observed to associate as dimers, formation of this interstrand guanine tetrad structure occurs to a very limited extent and requires very high G-strand concentration, high ionic strength, and at least 49 hours of incubation. Our results suggest that, if telomere dimerization occurs in vivo, it would require factors in addition to the TTTTAGGG telomere sequence.  相似文献   

14.
Secondary structures of the G-rich strand of human telomere DNA fragments G3(TTAG3)n, n = 1–16, have been studied by means of circular dichroism spectroscopy and PAGE, in solutions of physiological potassium cation concentrations. It has been found that folding of these fragments into tetraplexes as well as tetraplex thermostabilities and enthalpy values depend on the number of TTAG3 repeats. The suggested topologies include, e.g. antiparallel and parallel bimolecular tetraplexes, an intramolecular antiparallel tetraplex, a tetraplex consisting of three parallel chains and one antiparallel chain, a poorly stable parallel intramolecular tetraplex, and both parallel and antiparallel tetramolecular tetraplexes. G3(TTAG3)3 folds into a single, stable and very compact intramolecular antiparallel tetraplex. With an increasing repeat number, the fragment tetraplexes surprisingly are ever less thermostable and their migration and enthalpy decrease indicate increasing irregularities or domain splitting in their arrangements. Reduced stability and different topology of lengthy telomeric tails could contribute to the stepwise telomere shortening process.  相似文献   

15.
Origin recognition complex (ORC), consisting of six subunits ORC1–6, is known to bind to replication origins and function in the initiation of DNA replication in eukaryotic cells. In contrast to the fact that Saccharomyces cerevisiae ORC recognizes the replication origin in a sequence-specific manner, metazoan ORC has not exhibited strict sequence-specificity for DNA binding. Here we report that human ORC binds preferentially to G-quadruplex (G4)-preferable G-rich RNA or single-stranded DNA (ssDNA). We mapped the G-rich RNA-binding domain in the ORC1 subunit, in a region adjacent to its ATPase domain. This domain itself has an ability to preferentially recognize G4-preferable sequences of ssDNA. Furthermore, we found, by structure modeling, that the G-rich RNA-binding domain is similar to the N-terminal portion of AdoMet_MTase domain of mammalian DNA methyltransferase 1. Therefore, in contrast with the binding to double-stranded DNA, human ORC has an apparent sequence preference with respect to its RNA/ssDNA binding. Interestingly, this specificity coincides with the common signature present in most of the human replication origins. We expect that our findings provide new insights into the regulations of function and chromatin binding of metazoan ORCs.  相似文献   

16.
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin or stabilizes an unwound state. We analyzed the contribution of pTP to pTP/pol origin binding using various DNA oligonucleotides. We show that two pTP molecules bind cooperatively to short DNA duplexes, while longer DNA fragments are bound by single pTP molecules as well. Cooperative binding to short duplexes is DNA sequence independent and most likely mediated by protein/protein contacts. Furthermore, we observed that pTP binds single-stranded (ss)DNA with a minimal length of approximately 35 nt and that random ssDNA competed 25-fold more efficiently than random duplex DNA for origin binding by pTP. Remarkably, short DNA fragments with two opposing single strands supported monomeric pTP binding. pTP did not stimulate, but inhibited strand displacement by the Ad DNA binding and unwinding protein DBP. These observations suggest a mechanism in which the ssDNA affinity of pTP stabilizes Ad pol on partially unwound origin DNA.  相似文献   

17.
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.  相似文献   

18.
The ability of the intermediate filament subunit protein vimentin to bind synthetic oligonucleotide telomere models containing repeat sequences from Oxytricha (T4G4), Saccharomyces (TGTGTG3), or Tetrahymena (T2G4) was investigated in vitro with a filter binding assay and a gel overlay assay. At low ionic strength, vimentin bound these oligonucleotides with high affinity. At higher ionic strength, the vimentin-oligonucleotide complex was less stable, such that approximately 30% of the initial binding remained at 150 mM KCl. One mole of vimentin tetramer bound approximately 1 mol of telomere oligonucleotide. Vimentin bound well oligonucleotides containing either a random duplex or random 3'-overhang, but showed a reduced affinity for a blunt-ended oligonucleotide. A control random sequence oligonucleotide was not bound by vimentin. The oligonucleotide-binding site of vimentin was shown to be localized in the non-alpha-helical N-terminal domain by assays employing purified proteolytic fragments of vimentin. Preliminary results in the gel overlay assay show that other members of the intermediate filament family, nuclear lamins A-C, all bind the synthetic oligonucleotide containing the telomere repeat sequence of Oxytricha.  相似文献   

19.
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.  相似文献   

20.
In the course of exploring the hybridization properties of glass DNA microarrays, multi-stranded DNA structures were observed that could not be accounted for by classical Watson-Crick base pairing. Non-denatured double-stranded DNA array elements were shown to hybridize to single-stranded (ss)DNA probes. Similarly, ssDNA array elements were shown to bind duplex DNA probes. This led to a series of experiments demonstrating the formation of multi-stranded DNA structures on the surface of microarrays. These structures were observed with a number of heterogeneous sequences, including both purine and pyrimidine bases, with shared sequence identity between the ssDNA and one of the duplex strands. Furthermore, we observed a strong binding preference near the ends of duplexes containing a 3'-homologous strand. We suggest that such binding interactions on cationic solid surfaces could serve as a model for a number of biological processes mediated through multi-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号