首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Localization of ASH1 mRNA to the distal cortex of daughter but not mother cells at the end of anaphase is responsible for the two cells' differential mating-type switching during the subsequent cell cycle. This localization depends on actin filaments and a type V myosin (She1/Myo4). The 3' untranslated region (3' UTR) of ASH1 mRNA is reportedly capable of directing heterologous RNAs to a mother cell's bud [1] [2]. Surprisingly, however, its replacement has little or no effect on the localisation of ASH1 mRNA. We show here that, unlike all other known localization sequences that have been found in 3' UTRs, all the elements involved in ASH1 mRNA localization are located at least partly within its coding region. A 77 nucleotide region stretching from 7 nucleotides 5' to 67 nucleotides 3' of the stop codon of ASH1 mRNA is sufficient to localize mRNAs to buds; the secondary structure of this region, in particular two stems, is important for its localizing activity. Two regions entirely within coding sequences, both sufficient to localize green fluorescent protein (GFP) mRNA to growing buds, are necessary for ASH1 mRNA localization during anaphase. These three regions can anchor GFP mRNA to the distal cortex of daughter cells only inefficiently. The tight anchoring of ASH1 mRNA to the cortex of the daughter cell depends on translation of the carboxy-terminal sequences of Ash1 protein.  相似文献   

4.
5.
6.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3'-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3'-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.  相似文献   

7.
8.
9.
10.
11.
In Saccharomyces cerevisiae, ASH1 mRNA is localized to the tip of daughter cells during anaphase of the cell cycle. ASH1 mRNA localization is dependent on four cis-acting localization elements as well as Myo4p, She2p, and She3p. Myo4p, She2p, and She3p are hypothesized to form a heterotrimeric protein complex that directly transports ASH1 mRNA to daughter cells. She2p is an RNA-binding protein that directly interacts with ASH1 cis-acting localization elements and associates with She3p. Here we report the identification of seven She2p mutants-N36S, R43A, R44A, R52A, R52K, R63A, and R63K-that result in the delocalization of ASH1 mRNA. These mutants are defective for RNA-binding activity but retain the ability to interact with She3p, indicating that a functional She2p RNA-binding domain is not a prerequisite for association with She3p. Furthermore, the nuclear/cytoplasmic distribution for the N36S and R63K She2p mutants is not altered, indicating that nuclear/cytoplasmic trafficking of She2p is independent of RNA-binding activity. Using the N36S and R63K She2p mutants, we observed that in the absence of She2p RNA-binding activity, neither Myo4p nor She3p is asymmetrically sorted to daughter cells. However, in the absence of She2p, Myo4p and She3p can be asymmetrically segregated to daughter cells by artificially tethering mRNA to She3p, implying that the transport and/or anchoring of the Myo4p/She3p complex is dependent on the presence of associated mRNA.  相似文献   

12.
mRNA trafficking in fungi   总被引:1,自引:0,他引:1  
  相似文献   

13.
ASH1 mRNA localizes at the bud tip of late-anaphase yeast, resulting in accumulation of Ash1p in the daughter nucleus. We show that disruption of the secondary structure, but not the protein coding, of all four ASH1 localization elements resulted in RNA and protein delocalization. Localization of both was incrementally restored by replacement of each of the four elements. However, transposition of the elements to the 3'UTR reinstated the RNA, but not the protein, localization. Interestingly, the mutant ASH1 mRNA was translated more efficiently, suggesting that asymmetry of Ash1p resulted from translational inhibition by the localization elements. In support of this, Ash1p asymmetry could be rescued by slowing its translation.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号