首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of recombinant human erythropoietin (rhEPO) to promote repair and minimize cardiac hypertrophy after myocardial infarction has had disappointing outcomes in clinical trials. We hypothesized that the beneficial non-hematopoietic effects of rhEPO against cardiac hypertrophy could be offset by the molecular changes initiated by rhEPO itself, leading to rhEPO resistance or maladaptive hypertrophy. This hypothesis was investigated using an isoproterenol-induced model of myocardial infarct and cardiac remodelling with emphasis on hypertrophy. In h9c2 cardiomyocytes, rhEPO decreased isoproterenol-induced hypertrophy, and the expression of the pro-fibrotic factors fibronectin, alpha smooth muscle actin and transforming growth factor beta-1 (TGF-β1). In contrast, by itself, rhEPO increased the expression of fibronectin and TGF-β1. Exogenous TGF-β1 induced a significant increase in hypertrophy, which was further potentiated by rhEPO. Exogenous fibronectin not only induced hypertrophy of cardiomyocytes, but also conferred resistance to rhEPO treatment. Based on these findings we propose that the outcome of rhEPO treatment for myocardial infarction is determined by the baseline concentrations of fibronectin and TGF-β1. If endogenous fibronectin or TGF-β levels are above a certain threshold, they could cause resistance to rhEPO therapy and enhancement of cardiac hypertrophy, respectively, leading to maladaptive hypertrophy.  相似文献   

2.
Summary Pancreatic islet B cells depolarize and display trains of action potentials in response to stimulatory concentrations of glucose. Based on data from rodent islets these action potentials are considered to be predominantly Ca2+ dependent. Here we describe Na+-dependent action potentials and Na+ currents recorded from canine and human pancreatic islet B cells. Current-clamp recording using the nystatin perforated-patch technique demonstrates that B cells from both species display tetrodotoxin-sensitive Na+ action potentials in response to modest glucose-induced depolarization. In companion whole-cell voltage-clamp experiments on canine B cells, the underlying Na+ current displays steep voltage-dependent activation and inactivation over the range of –50 to –40 mV. The Na+ current is sensitive to tetrodotoxin block with aK 1=3.2nm and has a reversal potential which changes with [Na+] o as predicted by the Nernst equation. These results suggest that a voltage-dependent Na+ current may contribute significantly to action potential generation in some species outside the rodent family.  相似文献   

3.
Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance.  相似文献   

4.
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major pathways that account for survival after post-replicational DNA damage. TLS functions by filling gaps on a daughter strand that remain after DNA replication caused by damage on the mother strand, while HR can repair gaps and breaks using the intact sister chromatid as a template. The RAD18 gene, which is conserved from lower eukaryotes to vertebrates, is essential for TLS in Saccharomyces cerevisiae. To investigate the role of RAD18, we disrupted RAD18 by gene targeting in the chicken B-lymphocyte line DT40. RAD18(-/-) cells are sensitive to various DNA-damaging agents including ultraviolet light and the cross-linking agent cisplatin, consistent with its role in TLS. Interestingly, elevated sister chromatid exchange, which reflects HR- mediated post-replicational repair, was observed in RAD18(-/-) cells during the cell cycle. Strikingly, double mutants of RAD18 and RAD54, a gene involved in HR, are synthetic lethal, although the single mutant in either gene can proliferate with nearly normal kinetics. These data suggest that RAD18 plays an essential role in maintaining chromosomal DNA in cooperation with the RAD54-dependent DNA repair pathway.  相似文献   

5.
Computationally advanced biomechanical analyses of gait demonstrate the often counter-intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two-dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration.  相似文献   

6.
7.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase. PTEN inhibits the action of phosphatidylinositol-3-kinase and reduces the levels of phosphatidylinositol triphosphate, a crucial second messenger for cell proliferation and survival, as well as insulin signaling. In this study, we deleted Pten specifically in the insulin producing beta cells during murine pancreatic development. Pten deletion leads to increased cell proliferation and decreased cell death, without significant alteration of beta-cell differentiation. Consequently, the mutant pancreas generates more and larger islets, with a significant increase in total beta-cell mass. PTEN loss also protects animals from developing streptozotocin-induced diabetes. Our data demonstrate that PTEN loss in beta cells is not tumorigenic but beneficial. This suggests that modulating the PTEN-controlled signaling pathway is a potential approach for beta-cell protection and regeneration therapies.  相似文献   

8.
Dorsoventral patterning of the Drosophila ventral neuroectoderm is established by the expression of three evolutionarily conserved homeodomain genes: ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh) in the medial, intermediate, and lateral columns of the ventral neuroectoderm, respectively. It was not clear whether extrinsic factor(s) from the CNS midline cells influence the initial dorsoventral patterning by controlling the expression of the dorsoventral patterning genes. We show here that the CNS midline cells, specified by single-minded (sim), are essential for maintaining expression of the dorsoventral patterning genes. Ectopic expression of sim in the ventral neuroectoderm during the blastoderm stage repressed expression of the three homeodomain genes in the ventral neuroectoderm. This indicates that the identity of the CNS midline cells is established by a series of repressions of the three homeodomain genes in the ventral neuroectoderm. Ectopic expression of sim in the ventral neuroectoderm during initial neurogenesis induced ectopic ind expression in the medial column in addition to that in the intermediate column via EGFR signaling between the ventral neuroectoderm and midline cells. In contrast, it repressed the expression of vnd and msh in the medial and lateral columns, respectively. Our findings demonstrate that the CNS midline cells provide extrinsic positional information via EGFR signaling that maintains the initial subdivision of the ventral neuroectoderm into three dorsoventral columns during initial neurogenesis.  相似文献   

9.
10.
We used transgenesis to explore the requirement for downregulation of hepatocyte nuclear factor 6 (HNF6) expression in the assembly, differentiation, and function of pancreatic islets. In vivo, HNF6 expression becomes downregulated in pancreatic endocrine cells at 18. 5 days post coitum (d.p.c.), when definitive islets first begin to organize. We used an islet-specific regulatory element (pdx1(PB)) from pancreatic/duodenal homeobox (pdx1) gene to maintain HNF6 expression in endocrine cells beyond 18.5 d.p.c. Transgenic animals were diabetic. HNF6-overexpressing islets were hyperplastic and remained very close to the pancreatic ducts. Strikingly, alpha, delta, and PP cells were increased in number and abnormally intermingled with islet beta cells. Although several mature beta cell markers were expressed in beta cells of transgenic islets, the glucose transporter GLUT2 was absent or severely reduced. As glucose uptake/metabolism is essential for insulin secretion, decreased GLUT2 may contribute to the etiology of diabetes in pdx1(PB)-HNF6 transgenics. Concordantly, blood insulin was not raised by glucose challenge, suggesting profound beta cell dysfunction. Thus, we have shown that HNF6 downregulation during islet ontogeny is critical to normal pancreas formation and function: continued expression impairs the clustering of endocrine cells and their separation from the ductal epithelium, disrupts the spatial organization of endocrine cell types within the islet, and severely compromises beta cell physiology, leading to overt diabetes.  相似文献   

11.
Tissue plasticity is well documented in the context of pancreatic regeneration and carcinogenesis, with recent reports implicating dedifferentiated islet cells both as endocrine progenitors and as the cell(s) of origin in pancreatic adenocarcinoma. Accordingly, it is noteworthy that accumulating evidence suggests that TGFbeta signaling is essential to pancreatic endocrine development and maintenance, whereas its loss is associated with the progression to pancreatic adenocarcinoma. The aim of this study was to examine the role of TGFbeta in an in vitro model of islet morphogenetic plasticity. Human islets were embedded in a collagen gel and cultured under conditions that induced transformation into duct-like epithelial structures (DLS). Addition of TGFbeta caused a dose-dependent decrease in DLS formation. Although it was demonstrated that collagen-embedded islets secrete low levels of TGFbeta, antibody-mediated neutralization of this endogenously released TGFbeta improved DLS formation rates, suggesting local TGFbeta concentrations may in fact be higher. Time course studies indicated that TGFbeta signaling was associated with an increase in ERK and p38 MAPK phosphorylation, although inhibitor-based studies were consistent with an islet endocrine-stabilizing effect mediated by p38 alone. Localization of TGFbeta signaling molecules suggested that the action of TGFbeta is directly on the beta-cell to inhibit apoptosis and thus stabilize endocrine phenotype.  相似文献   

12.
To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy. Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient trans  相似文献   

13.
Although unregulated activation of the Ras/Raf/mitogen-activated protein kinase kinase/Erk signaling pathway is believed to be a central mechanism by which many cell types undergo oncogenic transformation, recent studies indicate that activation of Raf kinase by oncogenic Ras is not sufficient to cause tumorigenic transformation in intestinal epithelial cells. Thus, identification of signaling proteins and pathways that interact with Raf to transform intestinal epithelial cells may be critical for understanding aberrant growth control in the intestinal epithelium. Functional interactions between Raf and the small GTPase RhoA were studied in RIE-1 cells overexpressing both activated Raf(22W) and activated RhoA(63L). Double transfectants were morphologically transformed, formed colonies in soft agar, grew in nude mice, overexpressed cyclin D1 and cyclooxygenase-2 (COX-2), and were resistant to growth inhibition by transforming growth factor (TGF) beta. RIE-Raf and RIE-RhoA single transfectants showed none of these characteristics. Expression of a dominant-negative RhoA(N19) construct in RIE-Ras(12V) cells was associated with markedly reduced COX-2 mRNA, COX-2 protein, and prostaglandin E2 levels when compared with RIE-Ras(12V) cells transfected with vector alone. However, no change in transformed morphology, growth in soft agar, cyclin D1 expression, TGFalpha expression, or TGFbeta sensitivity was observed. In summary, coexpression of activated Raf and RhoA induces transformation and TGFbeta resistance in intestinal epithelial cells. Although blockade of RhoA signaling reverses certain well-described characteristics of RIE-Ras cells, it is insufficient to reverse the transformed phenotype and restore TGFbeta sensitivity. Blockade of additional Rho family members or alternate Ras effector pathways may be necessary to fully reverse the Ras phenotype.  相似文献   

14.
Growth hormone (GH) is an important mitogenic stimulus for the insulin-producing beta-cell. We investigated the effects of GH on Ca(2+) handling and diacylglycerol (DAG) and cAMP formation in the beta-cell. GH elicited a rapid increase in the cytoplasmic free [Ca(2+)], which required extracellular Ca(2+) and was also blocked by pertussis toxin or protein kinase C (PKC) inhibition. GH also elevated islet DAG content, which should lead to PKC activation. Pertussis toxin and PKC inhibitors obliterated the mitogenicity of GH, suggesting involvement of GTP-binding proteins. PKC activation stimulated beta-cell proliferation, and it also activated phospholipase D. Islet cAMP content was not elevated by GH. Addition of a specific protein kinase A antagonist failed to influence the mitogenicity of GH, whereas a stimulatory cAMP agonist stimulated beta-cell replication. We conclude that GH rapidly increases the beta-cell cytoplasmic free [Ca(2+)] and also evokes a similar increase in DAG content via a phosphatidylcholine-specific phospholipase C, but does not affect mitogen-activated protein kinases, phospholipase D, or the cAMP signaling pathway. This rise in DAG may be of importance in translation of the stimulatory signal of GH into a proliferative response by the beta-cell, which seems to occur through GTP-binding proteins and PKC-dependent mechanisms.  相似文献   

15.
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.  相似文献   

16.
Fas (CD95) and Fas ligand (FasL/CD95L) are involved in programmed cell death and the regulation of host immune responses. FasL has been shown to provide immune privilege, thus prolonging the survival of unmatched grafts in a variety of tissues, such as eyes and testis. In murine FasL (mFasL) transgenic mice, FasL provoked granulocyte infiltration and insulitis in the pancreas. We intended to study whether the expression of human FasL, instead of mFasL, on mouse beta islet cells could avoid granulocyte infiltration, and whether islet cells transgenic for FasL could be used in islet transplantation. We produced transgenic mice in which the human FasL transgene was driven by rat insulin promoter and was expressed exclusively in the pancreas islet cells in ICR mice. In contrast to mFasL transgenic mice, histochemical staining showed that the pancreas was intact in human FasL transgenic ICR mice. However, when human FasL transgenic islet cells were transplanted into allogeneic mice with streptozotocin-induced diabetes, human FasL appeared not to prolong graft survival. Intensive granulocyte infiltration into the islet grafts was observed in recipients (Balb/c mice) which received islet grafts from human FasL transgenic mice, but not from nontransgenic, allogeneic ICR mice on day 31. Our observations suggest that FasL alone is insufficient to confer immune protection, and that other environmental factors might contribute to the formation of immune privilege sites in vivo Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.  相似文献   

17.
There remains great uncertainty about how much tropical forest canopies contribute to global species richness estimates and the relative specialization of insect species to vertical zones. To investigate these issues, we conducted a four-year sampling program in lowland tropical rainforest in North Queensland, Australia. Beetles were sampled using a trap that combines Malaise and flight interception trap (FIT) functions. Pairs of this trap, one on the ground and a second suspended 15-20 m above in the canopy were located at five sites, spaced 50 m or more apart. These traps produced 29986 beetles of 1473 species and 77 families. There were similar numbers of individuals (canopy 14473; ground 15513) and species (canopy 1158; ground 895) in each stratum, but significantly more rare species in the canopy (canopy 509; ground 283). Seventy two percent of the species (excluding rare species) were found in both strata. Using IndVal, we found 24 and 27% of the abundant species (n>or=20 individuals) to be specialized to the canopy and the ground strata, respectively, and equivalent analyses at the family level showed figures of 30 and 22%, respectively. These results show that the canopy and the ground strata both provide important contributions to rainforest biodiversity.  相似文献   

18.
Before exocytosis, vesicles must first become docked to the plasma membrane. The SNARE complex was originally hypothesized to mediate both the docking and fusion steps in the secretory pathway, but previous electron microscopy (EM) studies indicated that the vesicular SNARE protein synaptobrevin (syb) was dispensable for docking. In this paper, we studied the function of syb in the docking of large dense-core vesicles (LDCVs) in live PC12 cells using total internal reflection fluorescence microscopy. Cleavage of syb by a clostridial neurotoxin resulted in significant defects in vesicle docking in unfixed cells; these results were confirmed via EM using cells that were prepared using high-pressure freezing. The membrane-distal portion of its SNARE motif was critical for docking, whereas deletion of a membrane-proximal segment had little effect on docking but diminished fusion. Because docking was also inhibited by toxin-mediated cleavage of the target membrane SNAREs syntaxin and SNAP-25, syb might attach LDCVs to the plasma membrane through N-terminal assembly of trans-SNARE pairs.  相似文献   

19.
20.
Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with?a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in?vitro and in?vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose?BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号