首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

2.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems “intact mitochondria — mersalyzed microsomes” and “mersalyzed mitochondria— untreated microsomes”. No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

3.
Molecular mechanism of alpha-tocopherol action   总被引:1,自引:0,他引:1  
  相似文献   

4.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems "intact mitochondria - mersalyzed microsomes" and "mersalyzed mtiochondria - untreated microsomes". No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

5.
This review will focus on the therapeutic uses of antioxidant liposomes. Antioxidant liposomes have a unique ability to deliver both lipid- and water-soluble antioxidants to tissues. This review will detail the varieties of antioxidants which have been incorporated into liposomes, their modes of administration, and the clinical conditions in which antioxidant liposomes could play an important therapeutic role. Antioxidant liposomes should be particularly useful for treating diseases or conditions in which oxidative stress plays a significant pathophysiological role because this technology has been shown to suppress oxidative stress. These diseases and conditions include cancer, trauma, irradiation, retinotherapy or prematurity, respiratory distress syndrome, chemical weapon exposure, and pulmonary infections.  相似文献   

6.
Endogenous antioxidants such as the lipid-soluble vitamin E protect the cell membranes from oxidative damage. Glutathione seems to be able to regenerate alpha-tocopherol via a so-called free radical reductase. The transient protection by reduced glutathione (GSH) against lipid peroxidation in control liver microsomes is not observed in microsomes deficient in alpha-tocopherol. Introduction of antioxidant flavonoids, such as 7-monohydroxyethylrutoside, fisetin or naringenin, into the deficient microsomes restored the GSH-dependent protection, suggesting that flavonoids can take over the role of alpha-tocopherol as a chain-breaking antioxidant in liver microsomal membranes.  相似文献   

7.
8.
The concentrations and distributions of major lipids (cholesterol, phospholipid, and triglyceride), tocopherol and carotenoids were determined in the plasma lipoprotein fractions (VLDL, LDL, and HDL) of (1) normal human subjects, (2) patients with hyperlipoproteinemia, and (3) patients with erythropoietic protoporphyria treated with oral beta-carotene and/or alpha-tocopherol. The distribution of tocopherol (in percent) was most closely correlated with the distribution of total lipids in the individual lipoproteins, while the major portion of beta-carotene was present in the low density lipoproteins, irrespective of the lipid distribution in the lipoproteins (except for one subject with hyperchylomicronemia). The alpha-tocopherol and beta-carotene concentrations of plasma and RBC in patients treated with tocopherol and carotene were determined periodically for a one-year period. Plasma and RBC tocopherol concentrations showed a rapid, parallel increase in response to tocopherol supplementation. In contrast, the plasma and RBC carotene concentrations showed a much slower and nonparallel increase in response to carotene administration. When carotene supplementation was stopped, the elevated carotene levels in both plasma and RBC persisted for several months; the elevated plasma carotene level persisted longer than the raised RBC carotene levels. These results suggest that alpha-tocopherol and beta-carotene are transported differently in the circulation and that the tissue storage and mobilization of these compounds are different.  相似文献   

9.
The effect of alpha-tocopherol, ascorbate, rutin and dihydroquercetin on chemiluminescence (CL) accompanying the Fe2+-induced peroxidation of unsaturated fatty acids in phospholipid liposomes has been investigated. The amplitude of CL decreased and the latent period increased in the presence of alpha-tocopherol, rutin and dihydroquercetin which is typical of peroxide radical traps. Ascorbate also reduced the CL amplitude but only at small concentrations up to about 4 microM. A further increase of ascorbate concentration had a negligible effect on the amplitude. At the same time, the latent period in CL development increased with the growth of ascorbate concentration, apparently, as a result of recycling of divalent iron oxidized in the course of lipid peroxidation. The effects of rutin and dihydroquercetin on the liposomal CL in the presence of alpha-tocopherol and ascorbate in all experiments were almost the same as when these compounds were added individually. The antioxidant effects were merely summed up without any mutual enhancement or inhibition of each other's action.  相似文献   

10.
In order to explore the use of exchangeable poly(ethylene glycol) (PEG)-modified diacylphosphatidylethanolamines (PE) to temporarily shield binding ligands attached to the surface of liposomes, a model reaction based on inhibition and subsequent recovery of biotinylated liposome binding to streptavidin immobilized on superparamagnetic iron oxide particles (SA magnetic particles) was developed. PEG-lipid incorporation into biotinylated liposomes decreased liposome binding to SA magnetic particles in a non-linear fashion, where as little as 0.1 mol% PEG-PE resulted in a 20% decrease in binding. Using an assay based on inhibition of binding, PEG(2000)-PE transfer from donor liposomes to biotinylated acceptor liposomes could be measured. The influence of temperature and acyl chain composition on the transfer of PEG-diacyl PEs from donor liposomes to acceptor liposomes, consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine, cholesterol and N-((6-biotinoyl)amino)hexanoyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (54.9:45:0.1 mole ratio), was measured. Donor liposomes were prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (50 mol%), cholesterol (45 mol%) and 5 mol% of either PEG-derivatized 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE-PEG(2000)), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-PEG(2000)), or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG(2000)). Transfer of DSPE-PEG(2000) to the donor liposomes was not detected under the conditions employed. In contrast, DMPE-PEG(2000) was transferred efficiently even at 4 degrees C. Using an acceptor to donor liposome ratio of 1:4, the time required for DMPE-PEG(2000) to become evenly distributed between the two liposome populations (T(EQ)) at 4 degrees C and 37 degrees C was approx. 2 and <0.5 h, respectively. An increase in acyl chain length from C14:0 to C16:0 of the PEG-lipid resulted in a significant reduction in the rate of transfer as measured by this assay. The transfer of PEG-lipid out of biotinylated liposomes was also studied in mice following intravenous administration. The relative rates of transfer for the various PEG-lipids were found to be comparable under in vivo and in vitro conditions. These results suggest that it is possible to design targeted liposomes with the targeting ligand protected while in the circulation through the use of PEG-lipids that are selected on the basis of exchange characteristics which result in exposure of the shielded ligand following localization within a target tissue.  相似文献   

11.
The role of α-tocopherol (α-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 μM or 500 μM α-toco or 0.5 μM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that α-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.  相似文献   

12.
The events accompanying the inhibitory effect of alpha-tocopherol and/or ascorbate on the peroxidation of soybean L-alpha-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarographic methods. The presence of alpha-tocopherol radical in the concentration range 10(-8)-10(-7) M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylenetatramine complex. The alpha-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the alpha-tocopherol itself. A kinetic rate constant of about 2 X 10(5) M-1 X s-1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of alpha-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

13.
Various coated vesicles are implicated in the intracellular transport between different compartments. In vitro reconstitution is a powerful experimental system to study molecular mechanisms involved in assembly of coat proteins from cytosol onto membranes as well as formation of coated vesicles. Liposomes have been recently utilized in the cell-free systems. In this review, we summarize studies on reconstitutions of coated vesicles or coated structures on liposomes. A novel method using dynamic light scattering (DLS) to quantify vesicle formation from liposomes also is described. Our recent study on the role of phospholipids in vesicle formation, where the DSL assay is used in combination with lipid analysis, also is introduced.  相似文献   

14.
The antibiotic ionophore ionomycin translocates Ca from an aqueous medium into or across an organic immiscible phase. At pH 8.0, ionomycin translocates less Ca than A23187, the effects of these ionophores being additive to one another. The capacity of ionomycin to translocate Ca across the organic phase is dramatically decreased when the pH of the aqueous media is reduced from 8.0 to 7.5 or lower values. Ionomycin also mediates Ca exchange-diffusion in liposomes, the magnitude of such a process being greater in fluid than in rigid liposomes. At a physiological pH (7.4), ionomycin is unexpectedly as potent as A23187 in mediating Ca transport in fluid liposomes. These findings suggest that the capacity of ionophores to translocate Ca across model membranes depends on both the transverse and lateral mobility of the ionophoretic molecules. The relative importance of the latter phenomenon itself largely depends on the stoichiometry of the Ca-ionophore complex.  相似文献   

15.
13C Spin-lattice relaxation times (T1) of 13C-labeled alpha-tocopherol in three kinds of liposomes varying in their contents of arachidoyl residues have been measured by 13C-NMR spectroscopy. On the basis of T1 values, it is proved that the segmental motion of isoprenoid side chain of alpha-tocopherol tends to increase with an increase in the distance from the chromanol moiety, and that three methyl groups attached on the aromatic ring, have some affinity to unsaturated fatty acid residues rather than those of the isoprenoid side chain. These results are incompatible with the hypothesis of Diplock et al. (1) which 4'a- and 8'a-methyl groups of isoprenoid side chain are fitted in the Z-pockets of arachidoyl chain of polyunsaturated lipids in membrane.  相似文献   

16.
Liposomes were prepared from dipalmitoyllecithin, dimyristoyllecithin, dioleoyllecithin, egg lecithin, and soybean lecithin, and the effects of incorporation of various quantities of alpha-tocopherol or its analogs on permeability of the liposomes to glucose were studied at various temperatures (4--40 degrees C). Results showed that increase in the quantity of alpha-tocopherol incorporated into dipalmitoyllecithin and dimyristoyllecithin liposomes lowered the transition temperature for marked release of glucose and also decreased the maximum rate of temperature-dependent permeability, alpha-Tocopherol also had similar but less marked effects on the permeability of dioleoyllecithin and egg lecithin liposomes, but little effect on those of soybean lecithin, which has a higher degree of unsaturation. In dipalmitoyllecithin liposomes phytol showed a similar effect of permeability to that of alpha-tocopherol, but phytanic acid caused a different pattern of temperature-dependent permeability. With analogs of alpha-tocopherol, the regulatory effect on permeability decreased with shortening and disappearance of the isoprenoid side chain. The significance of these observations is discussed in relation to the physiological functions of tocopherols in natural membranes.  相似文献   

17.
The interaction of alpha-tocopherol with liposomes obtained from saturated and unsaturated phospholipids and the rate of its flip-flop were studied using fluorescent technique. It was found that the amount of alpha-tocopherol introduced into outer and inner monolayers remained unchanged for many hours. No migration from the outer to the inner monolayers and vice versa was observed. The effect did not depend on the fatty acid phospholipid composition. The results obtained are considered in view of the optimal conditions of membrane tissue saturation with liposome-incorporated tocopherol.  相似文献   

18.
Temperature dependence of D-glucose transport in reconstituted liposomes   总被引:1,自引:0,他引:1  
Sodium-dependent D-glucose uptake into proteoliposomes reconstituted from dimyristoylphosphatidylcholine (DMPC) and hog kidney brush border membrane extract is strongly affected by temperature and the physical state of the membranes. This dependence is defined by a nonlinear Arrhenius plot with a break point at 23 degrees C, a temperature not significantly different from the phase transition temperature of the pure lipid (24 degrees C). The transport process is characterized by different activation energies: 35.1 kcal/mol below and 5.5 kcal/mol above the transition temperature. The shift in the break point for the D-glucose transport activity from 15 degrees C, in the brush border membranes, to 23 degrees C in the reconstituted system leads us to conclude that the lipids surrounding the sodium/D-glucose cotransport system can exchange readily with the bulk lipid used for reconstitution. The results thus provide no evidence for the presence of an annulus of specific lipids surrounding the transport system.  相似文献   

19.
d-Alpha-tocopherol (2R,4'R,8'R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol "head" but differing in their hydrocarbon "tail": tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha-tocotrienol with the conventional bioassays of their vitamin activity.  相似文献   

20.
The dual functions of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron were studied, aiming specifically at elucidating the effect of interaction between alpha-tocopherol and iron. Ferrous ion decomposed hydroperoxide rapidly and induced the free radical chain oxidation of soybean phosphatidylcholine liposomes. alpha-Tocopherol acted primarily as a radical scavenger in the oxidation induced by ferrous ion and acted as an antioxidant. Ferric ion decomposed hydroperoxide much more slowly than ferrous ion, but it also induced the oxidation of liposomal membranes. alpha-Tocopherol incorporated into artificial liposomal membranes reduced ferric ion rapidly to give more reactive ferrous ion, and alpha-tocopherol acted either as an antioxidant or as a prooxidant depending on the experimental conditions. When alpha-tocopherol was depleted by the interaction with ferric ion, it acted solely as a prooxidant, whereas if some alpha-tocopherol remained, it acted as an antioxidant. On the other hand, alpha-tocopherol residing in the intact erythrocyte membranes did not reduce ferric ion in the aqueous region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号