首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies examine the effects of neonatal treatment with monosodium glutamate (MSG) on dopamine (DA), 5-hydroxytryptamine (5-HT) and norepinephrine (NE) metabolism in discrete brain regions and correlate them with steroid receptor kinetics in the anterior pituitary (PIT), preoptic hypothalamus (POA) and caudal hypothalamus (HYP), and with steroid negative and positive feedback effects on luteinizing hormone (LH) secretion. Substantial decreases in the neuronal activity of all three amines in the arcuate nucleus, decreased DA and 5-HT metabolism in the suprachiasmatic nucleus and, surprisingly, increased metabolism of 5-HT and NE in the median eminence was observed in adult ovariectomized (OVX), MSG-treated versus OVX, vehicle-treated litter mate controls. Measurement of estradiol receptors in the nuclear and cytosolic fractions of the POA, HYP and PIT from MSG- and vehicle-treated rats killed during diestrus or 2 weeks after OVX revealed no differences. Similarly, no differences in cytosolic progestin receptors between control and MSG unprimed or estradiol-primed, OVX rats or on progestin receptor translocation induced by progesterone in Eb-primed rats were observed. Negative and positive feedback effects of estradiol or the positive feedback of progesterone on LH secretion were not significantly impaired in MSG rats, and indeed, MSG animals actually were hyper-responsive to the administration of the steroids or of luteinizing hormone-releasing hormone. These results indicate that the MSG-induced damage to DA, 5-HT and NE elements observed within several preoptic and hypothalamic nuclei does not impair estrogen and progestin receptor kinetics, nor does it prevent adequate negative or positive steroid feedback responses, if appropriate steroid regimens are employed, and that the impaired gonadal function reported in these animals does not result primarily from inadequate steroid feedback mechanisms.  相似文献   

2.
Progesterone injection in estradiol-primed, ovariectomized guinea pigs results in down-regulation of hypothalamic progestin receptors determined by in vitro binding assays. In order to determine if progesterone also decreases immunostaining of progestin receptors and if progestin receptors are down-regulated preferentially in particular neuroanatomical areas, ovariectomized guinea pigs were injected with doses of estradiol benzoate (10 micrograms at 42 h before progesterone injection) and progesterone (500 micrograms at 4, 12, or 24 h before perfusion) that reliably induce the expression of lordosis and subsequent behavioral refractoriness to progesterone. Progestin receptor-immunoreactive cells were counted in sections from discrete parts of the preoptic area and hypothalamus. As expected, estradiol dramatically increased cell nuclear, and, to a lesser extent, cytoplasmic, immunostaining in defined regions of the preoptic area and hypothalamus. By 12 h after progesterone injection, the number of progestin receptor-immunoreactive cells had decreased in some areas, but not others. The rostral and caudal aspects of the ventrolateral hypothalamus were particularly responsive showing a substantial decrease in progestin receptor-immunoreactivity by 12 h after injection. No decreases in the progestin receptor-immunoreactive cell number were observed in any of the preoptic regions examined, although obvious decreases in immunostaining intensity were seen. The results of these immunocytochemical experiments extend earlier findings from in vitro progestin binding experiments and demonstrate that as with progestin binding, progestin receptor-immunoreactivity decreases when progesterone is injected in a behavioral desensitization procedure. Furthermore, they point to the ventrolateral hypothalamus as one site in which the down-regulation of progestin receptors may be particularly responsive to progesterone.  相似文献   

3.
Long-term ovariectomy reduces the ability of estradiol and progesterone treatment to induce sexual receptivity in female rats. Previous researchers suggested that this effect may be due to a decreased induction of neural progestin receptors by estradiol in the long-term ovariectomized rats. The present study was designed to replicate and extend this finding, and to search for neuroanatomical correlates by measuring the volume of the ventromedial nucleus (VMN) of the hypothalamus, a putative site of action of estradiol and progesterone for the induction of female sexual behavior. Long-term ovariectomy (5 to 6 weeks) as compared to short-term ovariectomy (1 week) reduced the ability of estradiol-17 beta and progesterone treatment to induce sexually receptive and proceptive behaviors. Consistent with previous reports, our data show that the reduced levels of cytosol progestin receptors after long-term ovariectomy and estradiol treatment are related to a reduced ability of estradiol to induce the receptors. Long-term ovariectomy did not affect the concentration of cytosol progestin receptors in the preoptic area, suggesting a neuroanatomical specificity to this effect. Contrary to our predictions, long-term ovariectomy did not affect the volume of the VMN. In fact, estradiol treatment, while blocking the effect of long-term ovariectomy on sexual behavior, decreased the volume of the VMN. Therefore, the measurement of the volume of the VMN is not a good predictor of the responsiveness to steroid hormone induction of sexual behavior.  相似文献   

4.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

5.
Zearalenone is a resorcylic acid lactone compound that is produced by fungal infection of edible grains and is believed to influence reproduction by binding to estrogen receptors. In order to study the potential estrogenic effects of this compound in the brain, we examined the effects of zearalenone on the expression of neuronal progestin receptors and feminine sexual behavior in female rats. Ovariectomized rats were treated with zearalenone (0.2, 1.0, or 2.0 mg), estradiol benzoate, or vehicle daily for 3 days. They were then either perfused, and progestin receptors visualized by immunocytochemistry, or injected with progesterone and tested for sexual receptivity with male rats. Progestin receptor-containing cells were counted in the medial preoptic area and ventromedial hypothalamus. The two highest doses of zearalenone increased the concentration of neuronal progestin receptors, as did 10 microg of estradiol. The highest dose of zearalenone (2 mg) also induced progestin receptor staining density comparable to that of 10 microg of estradiol benzoate. In behavioral tests, ovariectomized animals treated with 2 mg of zearalenone followed by progesterone showed levels of sexual receptivity comparable to females treated daily with estradiol benzoate (2 microg) followed by progesterone. These studies suggest that, although structurally distinct and less potent than estradiol, zearalenone can act as an estrogen agonist in the rat brain.  相似文献   

6.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

7.
These studies were designed to examine the effect of anisomycin, a potent and reversible inhibitor of protein synthesis with low systemic toxicity in rodents, on induction of luteinizing hormone (LH) surges by estradiol and their facilitation by progesterone. Immature female rats that received estradiol implants at 0900 h on Day 28 had LH surges approximately 32 h later (1700 h on Day 29). Insertion of progesterone capsules 24 h after estradiol led to premature (by 1400 h) and enhanced LH secretion. Protein synthesis was inhibited by 97%, 95%, 47%, and 16% in the hypothalamus-preoptic area (HPOA) and by 98%, 87%, 35%, and 0% in the pituitary at 30 min, 2 h, 4 h, and 6 h after s.c. injection of anisomycin (10 mg/kg BW), respectively. A single injection of anisomycin at 0, 3, 6, 9, 12, 24, 27, or 30 h after estradiol treatment significantly lowered serum LH levels at 32 h. The effect of injecting anisomycin at 0, 24, or 27 h was overridden by progesterone treatment at 24 h, but LH secretion was delayed serum LH levels were basal (10-30 ng/ml) at 1400 h but elevated (500-800 ng/ml) at 1700 h. Complete suppression of LH surges in estradiol-plus-progesterone-treated rats was achieved with 2 injections of anisomycin on Day 29 at 0900 h and again at 1200 h or 1400 h. Further experiments were designed to examine proteins that might be involved in anisomycin blockade of progesterone-facilitated LH surges. Intrapituitary LH concentrations at 1700 h on Day 29 were 70-80% higher (102 +/- 12.5 micrograms/pituitary) in rats that received 2 injections of anisomycin than in vehicle-treated controls (58.5 +/- 7.7 micrograms/pituitary). There were no significant effects of anisomycin on cytosol progestin receptors in the HPOA (7.1 +/- 1.5 fmol/tissue, anisomycin; 7.2 +/- 0.3, vehicle) or pituitary (8.3 +/- 1.3 fmol/tissue, anisomycin; 11.7 +/- 2.9, vehicle) at this time. The concentration of pituitary gonadotropin-releasing hormone receptors (GnRH-R), however, was significantly lower after anisomycin (265 +/- 30 vs. 365 +/- 37 fmol/mg protein) treatment. These results suggest that both estradiol-induced and progesterone-facilitated LH surges involve protein synthetic steps extending over many hours. Blockade of progesterone-facilitated LH surges by anisomycin appears to be due primarily to an effect on release of LH to which lowering of GnRH-R levels may contribute.  相似文献   

8.
The progestin-high-affinity-binding components in rat target tissues have been assayed by a simple and precise procedure by using spheroidal hydroxylapatite. The progestin 'receptors' in the uterus and hypothalamus of female rats are highly specific for progestins, which they bind with high affinity (Kd for [3H]progesterone in hypothalamus is 1.9 nM and in uterus is 3.7 nM). The dissociation of [3H]progesterone from receptor in vitro is rapid: t1/2 6 degrees C = 45 min in uterine cytosol; t1/2 6 degrees C = 160 min in hypothalamic cytosol. The binding is destroyed by proteinase. In the cytosol of hypothalamus and cortex of developing rats, progestin 'receptors' were present in both male and female rats by 2-3 days after birth; subsequent changes in concentration of these 'receptors' appeared to be independent of sex. Concentrations of progestin 'receptor' were close to adult values by 8-9 days, and thereafter changed relatively little.  相似文献   

9.
We have demonstrated a high density of both radiolabeled progesterone and estradiol conjugated to bovine serum albumin binding sites in the medial preoptic area and hypothalamus. Infusions of sex hormone binding globulin into the medial preoptic area of rats increased their female sexual receptivity similarly to the effect of estradiol conjugated to bovine serum albumin, suggesting sex hormone binding globulin acts at binding sites for estradiol conjugated to bovine serum albumin. In this study sex hormone binding globulin was used to displace radiolabeled progesterone conjugated to bovine serum albumin from plasma membrane fractions from the medial preoptic area-anterior hypothalamus and medial basal hypothalamus of ovariectomized rats injected with either 5 microg estradiol benzoate or sesame oil vehicle. We found that sex hormone binding displaced radiolabeled progesterone conjugated to bovine serum albumin in both areas and that in vivo estradiol treatment greatly increased the relative displacement by sex hormone binding globulin in the medial preoptic area-anterior hypothalamus. We interpret these data as indicating the presence of sex hormone binding globulin receptors in brain plasma membranes and further suggest that endogenous steroid conditions may alter these receptors.  相似文献   

10.
Hypothalamic glutamate and gamma-aminobutyric acid (GABA) neurotransmission are involved in the ovarian hormone-induced GnRH-LH surge in rodents. We previously reported that middle-aged rats have significantly less glutamate release in the medial preoptic area than young rats on the day of the LH surge. The present study tested the hypothesis that the delayed and attenuated LH surge in ovariohysterectomized middle-aged rats primed with ovarian steroids results from reduced hypothalamic glutamate and increased GABA(A) neurotransmission. Microdialysis results show that middle-aged rats with attenuated LH surges had reduced extracellular glutamate and increased extracellular GABA levels in the medial preoptic area compared with young rats. Blocking GABA(A) receptors with bicuculline or inhibiting synaptic glutamate reuptake with L-trans-pyrrolidine-2,4-dicarboxylic acid increased extracellular Glu in the medial preoptic area and partially restored LH surge amplitude in middle-aged rats without altering LH surge onset. Complete recovery of LH surge amplitude was observed in middle-aged rats treated with the combination of bicuculline and L-trans-pyrrolidine-2,4-dicarboxylic acid. This treatment also restored the extracellular glutamate:GABA ratio in the medial preoptic area of middle-aged rats to the level of young rats. Immunoblot analysis revealed that estradiol and progesterone treatment reduced SLC32A1(formerly known as vesicular GABA transporter) levels and increased SLC17A6 (formerly known as vesicular glutamate transporter 2) levels in the anterior hypothalamus of ovariohysterectomized young but not middle-aged rats. These data suggest that both reduced availability of glutamate and increased activation of GABA(A) receptors under estrogen-positive feedback conditions contribute to the age-related delay in onset and attenuated amplitude of the LH surge.  相似文献   

11.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

12.
A series of studies was undertaken to correlate the short-term dynamics of LH secretion and depletion-replenishment patterns of estrogen receptors (ER) in hypothalamic and pituitary cytosols of ovariectomized rats. Animals castrated for 2 weeks were administered various test compounds and analyzed at 1, 3, 5, 10 and 15 h post-treatment. A single injection of 10 micrograms 17 beta-estradiol (E2) to ovariectomized rats elicited a rapid depletion of ER in both pituitary and hypothalamus and a dramatic, though delayed, fall in serum LH. ER replenishment occurred in both tissues through 15 h and LH recovered in a similar manner. When cycloheximide was administered along with E2, ER replenishment was completely inhibited in both tissues; serum LH fell and failed to recover. Actinomycin D injected with E2 blocked replenishment in pituitary but not hypothalamus; serum LH recovered in parallel with the hypothalamic ER pattern. 17 alpha-E2 elicited only slight changes in ER and LH was suppressed 10-20% through 15 h. CI-628 caused a near total depletion of pituitary ER with no subsequent replenishment, whereas hypothalamic ER content was virtually unaltered; serum LH was suppressed and later recovered. Orchidectomized rats given 5 micrograms E2 demonstrated a less complete ER depletion in hypothalamus, and an earlier replenishment than that seen in pituitary or hypothalamus of similarly treated ovariectomized females. Serum LH rebounded to 157% of control levels at 15 h. The results indicate that the acute feedback suppression of LH by exposure to estrogens correlates with binding to ER and nuclear translocation. Replenishment and/or retention of cytoplasmic ER in hypothalamus appears to be required for full resumption of LH secretion, following acute suppression.  相似文献   

13.
The aim of this study was to examine the role of sex steroid hormones in the regulation of intracellular progesterone receptors (PR) in the rabbit central nervous system. We determined PR concentration in cytosol preparations from the hypothalamus, the frontal, tempo-parietal and occipital cortex, by using the specific binding of the synthetic progestin [3H]ORG 2058. PR concentration was higher in the hypothalamus of intact adult females than in that of adult males and prepubertal females, whereas no significant differences were observed in the cerebral cortex of these animals. PR concentration was similar in the three cortical regions analyzed, indicating a homogeneous distribution of PR in the cerebral cortex. The administration of estradiol to ovariectomized animals increased PR concentration in the hypothalamus but not in the cortex. The administration of progesterone to ovariectomized rabbits did not modify PR concentration in any region, however when progesterone was administered after estradiol, it induced a significant diminution in hypothalamic PR concentration without effects in the cortex. These findings suggest that in the rabbit, PR are estrogen regulated in the hypothalamus but not in the cerebral cortex. In the latter, PR are not regulated by progesterone, whereas in the former the estrogen-induced PR are down-regulated by progesterone. Interestingly, hypothalamic PR constitutively expressed in ovariectomized animals are progesterone-insensitive.  相似文献   

14.
Ovariectomy of adult female rats (200-230g) resulted in an increase in beta-adrenergic receptors in the cerebral cortex, hypothalamus and anterior pituitary. The anterior pituitary had the largest overall increase as well as the most rapid increase in beta-adrenergic receptor density of the tissues examined. The increase in hypothalamic or cerebral cortical beta-adrenergic receptors became apparent only long after ovariectomy (7-14 days). Fourteen days after ovariectomy, the density of beta-adrenergic receptors was 79%, 40%, and 24% in excess of control values in crude membranes prepared from anterior pituitary, hypothalamus and cerebral cortex, respectively. Over the same interval, the plasma concentration of luteinizing hormone (LH) increased 28-fold, while the concentration of follicle-stimulating hormone (FSH) rose 5-fold compared to control levels. Estradiol replacement (20 micrograms/kg/day) in these animals for four days before sacrifice concomitantly reduced plasma levels of the gonadotropins as well as the density of beta-adrenergic receptors in both the anterior pituitary and the hypothalamus. Long-term steroid replacement during the fifth and sixth week after ovariectomy, with implants of estradiol and progesterone which released the steroids in approximately physiological concentrations, significantly reduced beta-adrenergic density in anterior pituitary, but not in the hypothalamic membranes. This treatment significantly reduced plasma LH, but not FSH. Beta-adrenergic receptor density was also found to fluctuate significantly during the 4-day estrous cycle. The highest values were found on proestrus, and the lowest on diestrus 1. These studies indicate that changes in plasma concentrations of gonadal steroids (e.g. during the estrous cycle) influence the density of beta-adrenergic receptors in tissues involved in the control and release of anterior pituitary gonadotropins.  相似文献   

15.
In experimental dipsomania model (formation of physical dependence by method of intensive alcoholization) we have studied receptor binding of testosterone (T) and estradiol (E2) in the hypothalamus and pituitary body of mature male rats. Administration (at 10 and 16 h) of 25% ethanol-saline solution at a dose of 7.5 g/kg of body weight in the course of 5 days significantly decreased serum T level but did not change serum LH and FSH levels. Essential reduction of the nuclear androgen receptors in the preoptic-anterior hypothalamic area (POA), mediobasal hypothalamus (MBH) and adenohypophysis was noted in alcohol-treated rats. Unlike androgen receptors the number of the nuclear E2-binding sites in PaO was significantly increased in these males. Thus the results of the present paper demonstrate that multiple administration of ethanol stipulates deficit of serum T, androgen receptors in MBH and pituitary body that possibly results in separation of negative feedback mechanism between the gonads and pituitary body. Increase of specific binding of E2 to nuclear receptors in PoA might appear to explain feminization of alcohol-treated rats.  相似文献   

16.
Since administration of the antiprogesterone RU486 to cyclic female rats at metestrus and diestrus results in increased serum levels of LH, estradiol, and testosterone at proestrus, we investigated whether RU486 affects follicular steroidogenesis. Female rats with a 4-day estrous cycle, induced experimentally by a single injection of bromocriptine on the morning of estrus, were given RU486 (2 mg) twice daily (0900 and 1700 h) on metestrus and diestrus. At proestrus the preovulatory follicles were isolated and incubated for 4 h in the absence and presence of LH. In the absence of LH, accumulation of estradiol, testosterone, and progesterone in the medium was not different for RU486-treated rats and oil-treated controls. In contrast, LH-stimulated estradiol, testosterone, and progesterone secretions were significantly lower in RU486-treated rats compared with controls. Addition of pregnenolone to the incubation medium resulted in a significantly lower increase of progesterone in follicles from RU486-treated rats compared with those from oil-treated controls. This suggests that 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity is decreased by administration of RU486 in vivo. Aromatase and 17 alpha-hydroxylase/C17-20 lyase activities were not affected: addition of substrate (androstenedione and progesterone respectively) did not affect differently the amount of product formed (estradiol and testosterone) in RU486- and oil-treated rats. However, LH-stimulated pregnenolone secretion was lower in follicles from RU486-treated rats compared with follicles from oil-treated controls, suggesting that either cholesterol side-chain cleavage activity or LH responsiveness is decreased. At proestrus the preovulatory follicles from RU486- and oil-treated rats were not morphologically different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Estradiol secreted by the maturing follicle is the primary trigger for the surge of gonadotropins leading to ovulation. Progesterone has stimulatory or inhibitory actions on this estrogen-induced gonadotropin surge depending upon the time and dose of administration. The administration of progesterone to immature ovariectomized rats primed with a low dose of estradiol induced a well-defined LH surge and prolonged FSH release, a pattern similar to the proestrus surge of gonadotropins. A physiological role of progesterone is indicated in the normal ovulatory process because a single injection of the progesterone antagonist RU 486 on the day of proestrus in the adult cycling rat and on the day of the gonadotropin surge in the pregnant mare's serum gonadotropin stimulated immature rat resulted in an attenuated gonadotropin surge and reduced the number of ova per ovulating rat. Progesterone administration brought about a rapid LHRH release and an decrease in nuclear accumulation of estrogen receptors in the anterior pituitary but not the hypothalamus. The progesterone effect was demonstrated in vitro in the uterus and anterior pituitary and appears to be confined to occupied estradiol nuclear receptors. In in vivo experiments the progesterone effect on estradiol nuclear receptors appeared to be of approximately 2-h duration, which coincided with the time period of progesterone nuclear receptor accumulation after a single injection of progesterone. During the period of progesterone effects on nuclear estrogen receptors, the ability of estrogens to induce progesterone receptors was impaired. Based on the above results, a model is proposed for the stimulatory and inhibitory effects of progesterone on gonadotropin secretion.  相似文献   

18.
The inability of young female guinea pigs to display progesterone-facilitated lordosis has been attributed, in part, to a deficiency in the concentration of hypothalamic estradiol-induced progestin receptors, as measured by in vitro binding assays. An immunocytochemical technique was used to ascertain where, within the mediobasal hypothalamus, estradiol-induced progestin receptor levels are lower in immature than in adult females. Adult (greater than 7 weeks) and juvenile (3 weeks) ovariectomized females received 10 micrograms estradiol benzoate, a dose that primes adult, but not immature females to respond behaviorally to progesterone. Progestin receptor-immunoreactive (PR-IR) cells were counted in the arcuate nucleus (ARC) and ventrolateral hypothalamus (VLH), the two regions containing the densest populations of estradiol-induced progestin receptors in the mediobasal hypothalamus. There was no age difference in the number of PR-IR cells in the rostral or caudal VLH, but immunostaining was darker in the rostral VLH of juveniles as compared to adults. We found similar numbers of PR-IR cells in the rostral and mid-ARC, but 35% fewer immunostained cells in the caudal ARC of immature, as compared to adult females. Furthermore, staining intensity was weaker in the mid- and caudal ARC of the juvenile females. These data suggest that the ARC, not the VLH, is a site of fewer estradiol-induced progestin receptors in immature females.  相似文献   

19.
Low doses of estradiol, administered as pulses, are as effective as higher doses for priming ovariectomized (OVX) guinea pigs to display progesterone-facilitated lordosis. High doses of estradiol, administered by constant-release implants, induce progestin receptors in many substance P-immunoreactive (SP-IR) neurons in the ventrolateral hypothalamus (VLH), a site at which estradiol primes OVX guinea pigs to respond behaviorally to progesterone. To test the hypothesis that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH, OVX females received estradiol implants 1 week prior to perfusion, or two pulses of estradiol-17 beta, injected 39 and 11 h before perfusion. Colchicine was administered intracerebroventricularly prior to perfusion. No significant differences were observed in the total number of progestin receptor-immunoreactive (PR-IR) or substance P-immunoreactive cells in the VLH and VLH/ventromedial hypothalamus (VMH), respectively, of females receiving the two estradiol treatments. However, the percentage of PR-IR cells in the VLH also immunoreactive for SP was significantly higher in the estradiol pulse-treated (53%), than in the estradiol capsule-implanted animals (36%). These data suggest that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH and are consistent with the hypothesis that substance P is involved in progesterone-facilitated lordosis in guinea pigs.  相似文献   

20.
Low doses of estradiol, administered as pulses, are as effective as higher doses for priming ovariectomized (OVX) guinea pigs to display progesterone-facilitated lordosis. High doses of estradiol, administered by constant-release implants, induce progestin receptors in many substance P-immunoreactive (SP-IR) neurons in the ventrolateral hypothalamus (VLH), a site at which estradiol primes OVX guinea pigs to respond behaviorally to progesterone. To test the hypothesis that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH, OVX females received estradiol implants 1 week prior to perfusion, or two pulses of estradiol- 17β, injected 39 and 11 h before perfusion. Colchicine was administered intracerebroventricularly prior to perfusion. No significant differences were observed in the total number of progestin receptor-immunoreactive (PR-IR) or substance P-immunoreactive cells in the VLH and VLH/ventromedial hypothalamus (VMH), respectively, of females receiving the two estradiol treatments. However, the percentage of PR-IR cells in the VLH also immunoreactive for SP was significantly higher in the estradiol pulse-treated (53%), than in the estradiol capsule-implanted animals (36%). These data suggest that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH and are consistent with the hypothesis that substance P is involved in progesterone-facilitated lordosis in guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号