首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The actinobacterial community in rhizospheres of eaglewood (Aquilaria crassna Pierre ex Lec) was analyzed using culture-independent methods of RT-PCR and PCR DGGE of 16S rRNA gene. We conducted the experiments to investigate the difference in diversity and community structure of actinobacteria with respect to sampling sites and seasons and to determine effect of plant species on selection of rhizosphere community from different sampling sites. Total genomic DNA and RNA were extracted from rhizosphere soils collected from two plantations in Phetchabun province and one plantation in each Nakhonnayok province, Rayong province and Chiang Mai province of Thailand during dry and rainy seasons. The UPGMA dendrogram generated from DGGE fingerprints showed that the actinobacterial community was separated corresponding to sampling sites, suggesting sampling sites effect. The shift in community and diversity between two seasons was detected in all sampling sites. RNA-based analyses showed that several actinobacterial groups appeared to be ubiquitous but different in metabolic activity in different environments. Species diversity (S) and simple indexes (I) indicate the increase in species diversity of actinobacteria from all sampling sites in rainy season. Cloning and sequencing of 16S rRNA gene fragments obtained from DGGE bands revealed that 14 of 40 dominant species of actinobacteria in the rhizospheres of this plant belonged to uncultured actinobacteria. Besides the uncultured actinobacteria, Nocardioides sp., Streptomyces sp., Mycobacterium sp., Rhodococcus sp. and Actinoplanes sp. were indentified and frequently found more than other genera.  相似文献   

2.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

3.
Inoculation with Azospirillum brasilense exerts beneficial effects on plant growth and crop yields. In this study, a comparative analysis of maize (Zea mays) root inoculated or not inoculated with A. brasilense strains was performed in two soils. Colonization dynamics of the rhizobacteria were tracked in various root compartments using 16S rRNA-targeted probes and 4′,6′diamidino-2-phenylindole staining, and the structure of bacterial populations in the same samples was analyzed by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction products of the 16S rRNA gene. Based on whole cell hybridization, a large fraction of the bacterial community was found to be active in both the rhizoplane–endorhizosphere and rhizosphere soil compartments, in both soil types. A DGGE fingerprint analysis revealed that plant inoculation with A. brasilense had no effect on the structural composition of the bacterial communities, which were also found to be very similar at the root tip and at zones of root branching. However, rhizobacterial populations were strongly influenced by plant age, and their complexity decreased in the rhizoplane–endorhizosphere in comparison to rhizosphere soil. A clone library generated from rhizosphere DNA revealed a highly diverse community of soil and rhizosphere bacteria, including an indigenous Azospirillum-like organism. A large proportion of these clones was only distantly related to known species. Herschkovitz and Lerner contributed equally to this work.  相似文献   

4.
Fusarium oxysporum f. sp. cucumerinum is a destructive pathogen on cucumber (Cucumis sativus L.) seedlings and the causal organism of crown and root rot of cucumber plants. An isolate of B579, which was identified as Bacillus subtilis by 16S rDNA sequences analysis, was selected from 158 bacteria isolates as the best antagonist against F. oxysporum by dual plate assay. The production of chitinase, β-1, 3-glucanase, siderophores, indole-3-acetic acid (IAA), hydrogen cyanide (HCN), and phosphate solubilization, by B579 were screened with the selected medium by in vitro tests. The cell-free culture filtrate of B579, with a concentration of 20% (v/v), could result in the vacuolation, swelling and lysis of hyphae. Besides, it could blacken, shrunk and hindered the germination of conidia of F. oxysporum at the concentration of ≥80% (v/v). When applied as inoculants, B579 (108 c.f.u. ml?1) was able to reduce disease incidence by 73.60%, and promote seedling growth in pot trial studies. The activities of plant defense-related enzyme, peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were significantly increased in plants treated with B579. Interestingly, a higher content of IAA, an important plant growth regulator, was detected in B579 treated plants. Furthermore, seed-soaking with B579 exhibited a better biological control effect (Biocontrol effect 73.60%) and plant growth promoting ability (Vigor Index 4,177.53) than root-irrigation (50.88% and 3,575.77, respectively), suggesting the potential use of B579 as a seed-coating agent.  相似文献   

5.

Background

Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Methodology/Principal Findings

The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil.

Conclusions/Significance

These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.  相似文献   

6.
The essential oil produced by vetiver can vary in amount and composition depending on the bacterial community associated with its roots. Some of these bacteria could also promote plant growth by fixing nitrogen. This study aimed to analyze the diversity of diazotrophic bacteria tightly associated with roots of different vetiver genotypes. nifH-based PCR-denaturing gradient gel electrophoresis (DGGE) and clone libraries were used. DGGE profiles obtained from bulk and rhizosphere soils and root DNA amplified with nifH primers showed that samples from rhizosphere soil and root were separated at 68% similarity. Twelve bands were excised from the DGGE and sequenced. High similarity with nifH sequences of Bradyrhizobium sp., Pseudacidovorax sp. and Xanthobacter sp. was observed. Moreover, three nifH clone libraries were generated using polF/polR-primers from root DNA samples obtained from vetiver genotypes UFS-VET001, UFS-VET003 and UFS-VET004. In UFS-VET001, 24.2% of 95 clones were affiliated with sequences of Mesorhizobium loti while in UFS-VET003 41.5% of 89 clones were affiliated with Sphingomonas azotifigens, and in UFS-VET004 36.4% of 85 clones were affiliated with Klebsiella pneumoniae. The data obtained can be used to guide the isolation of diazotrophic bacteria, which may contribute to plant growth promotion and improvement of the production of essential oil in vetiver.  相似文献   

7.
Present study deals with the isolation of rhizobacteria and selection of plant growth promoting bacteria from Crocus sativus (Saffron) rhizosphere during its flowering period (October–November). Bacterial load was compared between rhizosphere and bulk soil by counting CFU/gm of roots and soil respectively, and was found to be ~40 times more in rhizosphere. In total 100 bacterial isolates were selected randomly from rhizosphere and bulk soil (50 each) and screened for in-vitro and in vivo plant growth promoting properties. The randomly isolated bacteria were identified by microscopy, biochemical tests and sequence homology of V1–V3 region of 16S rRNA gene. Polyphasic identification categorized Saffron rhizobacteria and bulk soil bacteria into sixteen different bacterial species with Bacillus aryabhattai (WRF5-rhizosphere; WBF3, WBF4A and WBF4B-bulk soil) common to both rhizosphere as well as bulk soil. Pseudomonas sp. in rhizosphere and Bacillus and Brevibacterium sp. in the bulk soil were the predominant genera respectively. The isolated rhizobacteria were screened for plant growth promotion activity like phosphate solubilization, siderophore and indole acetic acid production. 50 % produced siderophore and 33 % were able to solubilize phosphate whereas all the rhizobacterial isolates produced indole acetic acid. The six potential PGPR showing in vitro activities were used in pot trial to check their efficacy in vivo. These bacteria consortia demonstrated in vivo PGP activity and can be used as PGPR in Saffron as biofertilizers.This is the first report on the isolation of rhizobacteria from the Saffron rhizosphere, screening for plant growth promoting bacteria and their effect on the growth of Saffron plant.  相似文献   

8.
Beneficial rhizobacteria promote plant growth and protect plants against phytopathogens. Effective colonization on plant roots is critical for the rhizobacteria to exert beneficial activities. How bacteria migrate swiftly in the soil of semisolid or solid nature remains unclear. Here we report that sucrose, a disaccharide ubiquitously deployed by photosynthetic plants for fixed carbon transport and storage, and abundantly secreted from plant roots, promotes solid surface motility (SSM) and root colonization by Bacillus subtilis through a previously uncharacterized mechanism. Sucrose induces robust SSM by triggering a signaling cascade, first through extracellular synthesis of polymeric levan, which in turn stimulates strong production of surfactin and hyper-flagellation of the cells. B. subtilis poorly colonizes the roots of Arabidopsis thaliana mutants deficient in root-exudation of sucrose, while exogenously added sucrose selectively shapes the rhizomicrobiome associated with the tomato plant roots, promoting specifically bacilli and pseudomonad. We propose that sucrose activates a signaling cascade to trigger SSM and promote rhizosphere colonization by B. subtilis. Our findings also suggest a practicable approach to boost prevalence of beneficial Bacillus species in plant protection.Subject terms: Soil microbiology, Bacteriology  相似文献   

9.
Plant growth-promoting rhizobacteria (PGPR) are common components of the rhizosphere, but their role in adaptation of plants to extreme environments is not yet understood. Here, we examined rhizobacteria associated with ancient clones of Larrea tridentata in the Mohave desert, including the 11,700-year-old King Clone, which is oldest known specimen of this species. Analysis of unculturable and culturable bacterial community by PCR-DGGE revealed taxa that have previously been described on agricultural plants. These taxa included species of Proteobacteria, Bacteroidetes, and Firmicutes that commonly carry traits associated with plant growth promotion, including genes encoding aminocyclopropane carboxylate deaminase and β–propeller phytase. The PGPR activities of three representative isolates from L. tridentata were further confirmed using cucumber plants to screen for plant growth promotion. This study provides an intriguing first view of the mutualistic bacteria that are associated with some of the world’s oldest living plants and suggests that PGPR likely contribute to the adaptation of L. tridentata and other plant species to harsh environmental conditions in desert habitats.  相似文献   

10.
The present study carried out with denaturing gradient gel electrophoresis of DNA extracted from rhizosphere soils of Rauwolfia spp. collected from Western Ghat (WG) regions of Karnataka indicated that Pseudomonas sp. was prevalently found followed by Methylobacterium sp., Bacillus sp. and uncultured bacteria. A total of 200 rhizobacteria were isolated from 58 rhizosphere soil samples comprising of 15 different bacterial genera. The Shannon Weaver diversity index (H′) and Simpson’s diversity index (D) were found to be 2.57 and 0.91 for cultivable bacteria, respectively. The total species richness of cultivable rhizobacteria was high in Coorg district comprising 15 bacterial genera while in Mysore district, four bacterial genera were recorded. Rarefaction curve analysis also indicated the presence of higher species richness in samples of Shimoga and Coorg. All the rhizobacteria were screened for their multiple plant growth promotion and disease suppression traits. The results revealed that 70 % of the isolates colonized tomato roots, 42 % produced indole acetic acid, 55 % solubilized phosphorus, while 43, 22, 27, 19, 40, 15 and 44 % produced siderophore, salicylic acid, hydrogen cyanide, chitinase, phytase, cellulase and protease, respectively. Rhizobacterial isolates showing antagonistic activity against Fusarium oxysporum and Aspergillus flavus were 53 and 33 %, respectively. Plant growth promotion studies revealed that most of the isolates increased percent germination with significantly higher vigour index as compared to untreated control. Most predominant rhizobacteria found in the rhizospheres of Rauwolfia spp. of WG regions are potential PGPR which can serve as biofertilizers and biopesticides.  相似文献   

11.
Rhizosphere bacterial communities of two transgenic potato lines which produce T4 lysozyme for protection against bacterial infections were analyzed in comparison to communities of wild-type plants and transgenic controls not harboring the lysozyme gene. Rhizosphere samples were taken from young, flowering, and senescent plants at two field sites in three consecutive years. The communities were characterized in a polyphasic approach. Cultivation-dependent methods included heterotrophic plate counts, determination of species composition and diversity based on fatty acid analysis of isolates, and community level catabolic profiling. Cultivation-independent analyses were based on denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from rhizosphere DNA using primers specific for Bacteria, Actinomycetales, or α- or β-Proteobacteria. Several bands of the DGGE patterns were further characterized by sequence analysis. All methods revealed that environmental factors related to season, field site, or year but not to the T4 lysozyme expression of the transgenic plants influenced the rhizosphere communities. For one of the T4 lysozyme-producing cultivars, no deviation in the rhizosphere communities compared to the control lines was observed. For the other, differences were detected at some of the samplings between the rhizosphere community structure and those of one or all other cultivars which were not attributable to T4 lysozyme production but most likely to differences observed in the growth characteristics of this cultivar.  相似文献   

12.
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.  相似文献   

13.
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.  相似文献   

14.
The gut bacterial community from four species of feral locusts and grasshoppers was determined by denaturing gradient gel electrophoresis (DGGE) analysis of bacterial 16S rRNA gene fragments. The study revealed an effect of phase polymorphism on gut bacterial diversity in brown locusts from South Africa. A single bacterial phylotype, consistent with Citrobacter sp. dominated the gut microbiota of two sympatric populations of Moroccan and Italian locusts in Spain. There was evidence for Wollbachia sp. in the meadow grasshopper caught locally in the UK. Sequence analysis of DGGE products did not reveal evidence for unculturable bacteria and homologies suggested that bacterial species were principally Gammaproteobacteria from the family Enterobacteriaceae similar to those recorded previously in laboratory reared locusts.  相似文献   

15.
Characterization of the rhizobacteria of native grasses naturally colonizing abandoned mine sites may help in identification of microbial inoculants for ecological-restoration programmes. Eighty one strains of Saccharum munja rhizobacteria isolated from an abandoned mine located on Aravalli mountain and 50 from bulk-region were identified using 16S rRNA sequence analyses. Based on chemical- and biological-assays they were categorized into ecologically diverse functional groups (siderophore-, IAA-, ACC-deaminase-, HCN-, polyphosphate-producers; phosphate-solubilizer; antagonistic). Eight genera, 25 species from rhizosphere and 2 genera, 5 species from bulk-region were dominated by Bacillus spp. (B. barbaricus, B. cereus, B. firmus, B. flexus, B. foraminis, B. licheniformis, B. megaterium, B. pumilus, B. subtilis, B. thuringiensis) and Paenibacillus spp. (P. alvei, P. apiarius, P. lautus, P. lentimorbus, P. polymyxa, P. popillae). Siderophore-producers were common in rhizosphere and bulk soil, whereas IAA-producers, N2-fixers and FePO4-solubilizers dominated rhizosphere samples. During the reproductive phase (winter) of S. munja, siderophore-, ACC-deaminase- and polyP-producers were predominant; however dominance of HCN-producers in summer might be associated with termite-infestation. In vivo ability of selected rhizobacteria (B. megaterium BOSm201, B. subtilis BGSm253, B. pumilus BGSm157, P. alvei BGSm255, P. putida BOSm217, P. aeruginosa BGSm 306) to enhance seed-germination and seedling-growth of S. munja in mine-spoil suggest their significance in natural colonization and potential for ecological-restoration of Bhatti mine.  相似文献   

16.
The assessment of Burkholderia diversity in agricultural areas is important considering the potential use of this genus for agronomic and environmental applications. Therefore, the aim of this work was to ascertain how plant species and land use management drive the diversity of the genus Burkholderia. In a greenhouse experiment, different crops, i.e., maize, oat, barley, and grass, were planted in pots containing soils with different land use histories, i.e., maize monoculture, crop rotation, and permanent grassland, for three consecutive growth cycles. The diversity of Burkholderia spp. in the rhizosphere soil was assessed by genus-specific PCR-denaturing gradient gel electrophoresis (DGGE) and analyzed by canonical correspondence analysis (CCA). CCA ordination plots showed that previous land use was the main factor affecting the composition of the Burkholderia community. Although most variation in the Burkholderia community structure was observed between the permanent grassland and agricultural areas, differences between the crop rotation and maize monoculture groups were also observed. Plant species affected Burkholderia community structure to a lesser extent than did land use history. Similarities were observed between Burkholderia populations associated with maize and grass, on the one hand, and between those associated with barley and oat, on the other hand. Additionally, CCA ordination plots demonstrated that these two groups (maize/grass versus barley/oat) had a negative correlation. The identification of bands from the DGGE patterns demonstrated that the species correlated with the environmental variables were mainly affiliated with Burkholderia species that are commonly isolated from soil, in particular Burkholderia glathei, B. caledonica, B. hospita, and B. caribiensis.  相似文献   

17.
Plants encounter many biotic agents, such as viruses, bacteria, nematodes, weeds, and arachnids. These entities induce biotic stress in their hosts by disrupting normal metabolism, and as a result, limit plant growth and/or are the cause of plant mortality. Some biotic agents, however, interact symbiotically or synergistically with their host plants. Some microbes can be beneficial to plants and perform the same role as chemical fertilizers and pesticides, acting as a biofertilizer and/or biopesticide. Plant growth promoting rhizobacteria (PGPR) can significantly enhance plant growth and represent a mutually helpful plant-microbe interaction. Bacillus species are a major type of rhizobacteria that can form spores that can survive in the soil for long period of time under harsh environmental conditions. Plant growth is enhanced by PGPR through the induction of systemic resistance, antibiosis, and competitive omission. Thus, the application of microbes can be used to induce systemic resistance in plants against biotic agents and enhance environmental stress tolerance. Bacillus subtilis exhibits both a direct and indirect biocontrol mechanism to suppress disease caused by pathogens. The direct mechanism includes the synthesis of many secondary metabolites, hormones, cell-wall-degrading enzymes, and antioxidants that assist the plant in its defense against pathogen attack. The indirect mechanism includes the stimulation of plant growth and the induction of acquired systemic resistance. Bacillus subtilis can also solubilize soil P, enhance nitrogen fixation, and produce siderophores that promote its growth and suppresses the growth of pathogens. Bacillus subtilis enhances stress tolerance in their plant hosts by inducing the expression of stress-response genes, phytohormones, and stress-related metabolites. The present review discusses the activity of B. subtilis in the rhizosphere, its role as a root colonizer, its biocontrol potential, the associated mechanisms of biocontrol and the ability of B. subtilis to increase crop productivity under conditions of biotic and abiotic stress.  相似文献   

18.
Rhizobacteria of Maize and Their Antifungal Activities   总被引:15,自引:10,他引:5       下载免费PDF全文
During the growing season of 1984, the rhizobacteria (including organisms from the rhizosphere soil, the rhizoplane, and internal root zones) of 47 maize plants (two varieties) sampled from different locations in France and at different growth stages were inventoried. Isolates were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of their total cell proteins and were found to represent 352 different protein electrotypes. Maize seedlings were initially colonized by a small number of different strains. Densities reached up to 108 CFU/g of root. Later in the season, the population density decreased but the heterogeneity of the rhizobacterial populations increased. Fluorescent pseudomonads represented up to 35% of the total rhizobacterial population and comprised 43 different electrotypes. Other bacteria regularly present were Xanthomonas maltophilia, Serratia liquefaciens, Pseudomonas paucimobilis, and Bacillus spp. There was a very low similarity between rhizobacterial populations of plants of the same cultivar (LG5) within one field at different growth stages and also between rhizobacterial populations of the cultivars LG5 and BRIO42 on the same field. Most electrotypes (76%) were found on a single occasion. None of the 352 electrotypes was present on all plants. In the 1985 analysis the rhizobacteria of maize seedlings (one variety) sampled from one field were characterized. They represented 236 different protein electrotypes. Thirty-three isolates showed antifungal activity against major maize pathogens; they comprised four Pseudomonas cepacia strains, producing pyrrolnitrin as well as another unknown antifungal compound.  相似文献   

19.
Monoculture (MC) soybean, a common practice in the Northeast China, causes significant declines in soybean yield and quality. The objective of this study was to evaluate the responses of the soil microbial community and soybean yield to different soybean cropping systems. Three cropping systems were compared, (1) corn-soybean rotation (corn-corn-soybean, CS), (2) MC soybean for 3 years (S3), (3) MC soybean for 9 years (S9). Both bulk and rhizosphere soil samples were collected at three growth stages: two trifoliate (V2), full bloom (R2), and full seed (R6), respectively. Soil microbial DNA was analyzed using polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE) to assess changes in composition of bacterial and fungal communities. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant microbial populations. Some prominent differences were observed in bacterial DGGE patterns of amplified 16S rDNA (V3 region) among rhizosphere soils. These major differences included one DGGE band (showing 100% similarity to Arthrobacter sp.) that was enriched at R2 stages in CS and S9, and another band with 97% sequence similarity to an uncultured actinobacterium was detected at R6 stage in CS, and at R2 and R6 stages in S9. The bacterial community from bulk soil showed no significant band change in DGGE patterns among different cropping systems. In fungal DGGE patterns of the amplified 18S rDNA partial fragment, one specific band (showing 98% similarity to Trichoderma viride) occurred in rhizosphere soil of treatment CS at V2 and R6 stages and treatment S9 at R6 stage. None of the above bands were detected in treatment S3. The soybean yields and plant heights from CS and S9 were greater than those from S3. Moreover, catalase activities from CS and S9 at V2 and R2 stages were higher than those tested from S3 at the corresponding times in rhizosphere soil. The present results showed that DGGE patterns were not able to detect significant differences in diversity or evenness among microbial communities, but significant differences were found in the composition of bacterial and fungal community structures. Some distinguished bands from bacterial and fungal DGGE patterns were only enriched in CS and S9 soil, which could potentially play an important role in soybean growth development.  相似文献   

20.
Positive response of plant species to plant growth-promoting rhizobacteria have led to an increased interest in their use as bacterial inoculants. However, the introduction of exogenous bacteria into natural ecosystems may perturb bacterial populations within the microbial community and lead to the disruption of indigenous populations performing key functional roles. In this study the effect of Azospirillum brasilense inoculation on maize (Zea mays) rhizosphere Actinobacteria, Bacteroidetes, alpha-Proteobacteria, Pseudomonas and Bdellovibrio spp. was assessed using a polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) approach in conjunction with group-specific primers. The DGGE fingerprints analysis revealed that the introduction of A. brasilense did not alter or disrupt the microbial system at the group-specific level. However, some communities such as the alpha-Proteobacteria and Bdellovibrio were influenced by plant age while the other bacterial groups remained unaffected. Based on these as well as previous data, it can be inferred that inoculation with A. brasilense does not perturb the natural bacterial populations investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号