共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentially expressed gene (DEG) analysis is a major approach for interpreting phenotype differences and produces a large number of candidate genes. Given that it is burdensome to validate too many genes through benchwork, an urgent need exists for DEG prioritization. Here, a novel method is proposed for prioritizing bona fide DEGs by constructing the normal range of gene expression through integrating public expression data. Prioritization was performed by ranking the differences in cumulative probability for genes in case and control groups. DEGs from a study on pig muscle tissue were used to evaluate the prioritization accuracy. The results showed that the method reached an area under the receiver operating characteristic curve of 96.42% and can effectively shorten the list of candidate genes from a differential expression experiment to find novel causal genes. Our method can be easily extended to other tissues or species to promote functional research in broad applications. 相似文献
2.
Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting. 总被引:5,自引:3,他引:5 下载免费PDF全文
A novel method for identification of differentially expressed genes has been developed. It is based on the consecutive restriction digestions of 3' terminal cDNA fragments to produce a fingerprint of gene expression. cDNA molecules are synthesized using a biotinylated oligo(dT) primer, digested with a frequently cutting restriction endonuclease and the 3'-terminal restriction fragments are isolated using streptavidin microbeads. After amplification by PCR, cDNA fragments are immobilized again on streptavidin beads, radiolabeled and treated sequentially with a set of restriction endonucleases. The products of individual enzymatic reactions from two or more different RNA populations are resolved by polyacrylamide gel electrophoresis and compared to reveal differentially expressed genes. This strategy enabled us to identify and clone the fragments of five genes expressed differentially in murine thymus and spleen. One of the genes was found to encode terminal deoxynucleotidyl transferase; others are apparently previously unknown genes. 相似文献
3.
Background
To identify differentially expressed genes (DEGs) from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to these recommendations, researchers also want to know which combinations enhance reproducibility. 相似文献4.
MOTIVATION: Microarray technology emerges as a powerful tool in life science. One major application of microarray technology is to identify differentially expressed genes under various conditions. Currently, the statistical methods to analyze microarray data are generally unsatisfactory, mainly due to the lack of understanding of the distribution and error structure of microarray data. RESULTS: We develop a generalized likelihood ratio (GLR) test based on the two-component model proposed by Rocke and Durbin to identify differentially expressed genes from microarray data. Simulation studies show that the GLR test is more powerful than commonly used methods, like the fold-change method and the two-sample t-test. When applied to microarray data, the GLR test identifies more differentially expressed genes than the t-test, has a lower false discovery rate and shows more consistency over independently repeated experiments. AVAILABILITY: The approach is implemented in software called GLR, which is freely available for downloading at http://www.cc.utah.edu/~jw27c60 相似文献
5.
To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive threshold method (AT). The adaptive thresholds, which have different values for different expression levels, are calculated based on two measurements under the same condition. The sensitivity, specificity and false discovery rate (FDR) of AT were investigated by simulations. The sensitivity and specificity under various noise conditions were greater than 89.7% and 99.32%, respectively. The FDR was smaller than 0.27. These results demonstrated the reliability of the method. 相似文献
6.
7.
This paper compares the type I error and power of the one- and two-sample t-tests, and the one- and two-sample permutation tests for detecting differences in gene expression between two microarray samples with replicates using Monte Carlo simulations. When data are generated from a normal distribution, type I errors and powers of the one-sample parametric t-test and one-sample permutation test are very close, as are the two-sample t-test and two-sample permutation test, provided that the number of replicates is adequate. When data are generated from a t-distribution, the permutation tests outperform the corresponding parametric tests if the number of replicates is at least five. For data from a two-color dye swap experiment, the one-sample test appears to perform better than the two-sample test since expression measurements for control and treatment samples from the same spot are correlated. For data from independent samples, such as the one-channel array or two-channel array experiment using reference design, the two-sample t-tests appear more powerful than the one-sample t-tests. 相似文献
8.
CIT: identification of differentially expressed clusters of genes from microarray data 总被引:3,自引:0,他引:3
Cluster Identification Tool (CIT) is a microarray analysis program that identifies differentially expressed genes. Following division of experimental samples based on a parameter of interest, CIT uses a statistical discrimination metric and permutation analysis to identify clusters of genes or individual genes that best differentiate between the experimental groups. CIT integrates with the freely available CLUSTER and TREEVIEW programs to form a more complete microarray analysis package. 相似文献
9.
Motivation
Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes.Results
We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning) is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO) with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change.Conclusions
Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune10.
Caroline A. Wallace Saira Ali Anne M. Glazier Penny J. Norsworthy Danilo C. Carlos James Scott Tom C. Freeman Lawrence W. Stanton Anne E. Kwitek Timothy J. Aitman 《Mammalian genome》2002,13(4):194-197
The spontaneously hypertensive rat (SHR) is a model of human essential hypertension. Increased blood pressure in SHR is associated
with other risk factors associated with cardiovascular disease, including insulin resistance and dyslipidemia. DNA microarray
studies identified over 200 differentially expressed genes and ESTs between SHR and normotensive control rats. These clones
represent candidate genes that may underlie previously detected QTLs in SHR. This study made use of the publication of two
whole-genome maps to identify positional QTL candidates. Radiation hybrid (RH) mapping was used to determine the chromosomal
locations of 70 rat genes and ESTs from this dataset. Most of the locations are novel, but in five cases we identified a definitive
map location for genes previously mapped by somatic cell hybrids and/or linkage analysis. Genes for which the mouse genome
map location was already determined mapped to syntenic segments in the rat genome map, except for two rat genes whose map
locations confirmed previous findings. Where synteny comparisons could be made only with the human, 74% of the genes mapped
in this study lay in a conserved syntenic segment. Chromosomal localisation of these mouse and human orthologs to syntenic
segments produces a high level of confidence in the data presented in this study. The data provide new map locations for rat
genes and will aid efforts to advance the rat genome map. The data may also be used to prioritize candidate QTL genes in SHR
and other rat strains on the basis of their map location. 相似文献
11.
SUMMARY: This report describes an algorithm (intensity-dependent selection of expression ratios or ISER) developed to analyse DNA array data by optimizing the selection of genes with the most significant variations in expression amongst two RNA samples. The algorithm is designed for use when little or no replication of array hybridizations is available. 相似文献
12.
High throughput technologies, such as gene expression arrays and protein mass spectrometry, allow one to simultaneously evaluate thousands of potential biomarkers that could distinguish different tissue types. Of particular interest here is distinguishing between cancerous and normal organ tissues. We consider statistical methods to rank genes (or proteins) in regards to differential expression between tissues. Various statistical measures are considered, and we argue that two measures related to the Receiver Operating Characteristic Curve are particularly suitable for this purpose. We also propose that sampling variability in the gene rankings be quantified, and suggest using the "selection probability function," the probability distribution of rankings for each gene. This is estimated via the bootstrap. A real dataset, derived from gene expression arrays of 23 normal and 30 ovarian cancer tissues, is analyzed. Simulation studies are also used to assess the relative performance of different statistical gene ranking measures and our quantification of sampling variability. Our approach leads naturally to a procedure for sample-size calculations, appropriate for exploratory studies that seek to identify differentially expressed genes. 相似文献
13.
RNA-Seq technologies are quickly revolutionizing genomic studies, and statistical methods for RNA-seq data are under continuous development. Timely review and comparison of the most recently proposed statistical methods will provide a useful guide for choosing among them for data analysis. Particular interest surrounds the ability to detect differential expression (DE) in genes. Here we compare four recently proposed statistical methods, edgeR, DESeq, baySeq, and a method with a two-stage Poisson model (TSPM), through a variety of simulations that were based on different distribution models or real data. We compared the ability of these methods to detect DE genes in terms of the significance ranking of genes and false discovery rate control. All methods compared are implemented in freely available software. We also discuss the availability and functions of the currently available versions of these software. 相似文献
14.
A mixture model approach to detecting differentially expressed genes with microarray data 总被引:4,自引:0,他引:4
An exciting biological advancement over the past few years is the use of microarray technologies to measure simultaneously the expression levels of thousands of genes. The bottleneck now is how to extract useful information from the resulting large amounts of data. An important and common task in analyzing microarray data is to identify genes with altered expression under two experimental conditions. We propose a nonparametric statistical approach, called the mixture model method (MMM), to handle the problem when there are a small number of replicates under each experimental condition. Specifically, we propose estimating the distributions of a t -type test statistic and its null statistic using finite normal mixture models. A comparison of these two distributions by means of a likelihood ratio test, or simply using the tail distribution of the null statistic, can identify genes with significantly changed expression. Several methods are proposed to effectively control the false positives. The methodology is applied to a data set containing expression levels of 1,176 genes of rats with and without pneumococcal middle ear infection. 相似文献
15.
Discovering tightly regulated and differentially expressed gene sets in whole genome expression data
MOTIVATION: Recently, a new type of expression data is being collected which aims to measure the effect of genetic variation on gene expression in pathways. In these datasets, expression profiles are constructed for multiple strains of the same model organism under the same condition. The goal of analyses of these data is to find differences in regulatory patterns due to genetic variation between strains, often without a phenotype of interest in mind. We present a new method based on notions of tight regulation and differential expression to look for sets of genes which appear to be significantly affected by genetic variation. RESULTS: When we use categorical phenotype information, as in the Alzheimer's and diabetes datasets, our method finds many of the same gene sets as gene set enrichment analysis. In addition, our notion of correlated gene sets allows us to focus our efforts on biological processes subjected to tight regulation. In murine hematopoietic stem cells, we are able to discover significant gene sets independent of a phenotype of interest. Some of these gene sets are associated with several blood-related phenotypes. AVAILABILITY: The programs are available by request from the authors. 相似文献
16.
DNA microarray experiments have generated large amount of gene expression measurements across different conditions. One crucial step in the analysis of these data is to detect differentially expressed genes. Some parametric methods, including the two-sample t-test (T-test) and variations of it, have been used. Alternatively, a class of non-parametric algorithms, such as the Wilcoxon rank sum test (WRST), significance analysis of microarrays (SAM) of Tusher et al. (2001), the empirical Bayesian (EB) method of Efron et al. (2001), etc., have been proposed. Most available popular methods are based on t-statistic. Due to the quality of the statistic that they used to describe the difference between groups of data, there are situations when these methods are inefficient, especially when the data follows multi-modal distributions. For example, some genes may display different expression patterns in the same cell type, say, tumor or normal, to form some subtypes. Most available methods are likely to miss these genes. We developed a new non-parametric method for selecting differentially expressed genes by relative entropy, called SDEGRE, to detect differentially expressed genes by combining relative entropy and kernel density estimation, which can detect all types of differences between two groups of samples. The significance of whether a gene is differentially expressed or not can be estimated by resampling-based permutations. We illustrate our method on two data sets from Golub et al. (1999) and Alon et al. (1999). Comparing the results with those of the T-test, the WRST and the SAM, we identified novel differentially expressed genes which are of biological significance through previous biological studies while they were not detected by the other three methods. The results also show that the genes selected by SDEGRE have a better capability to distinguish the two cell types. 相似文献
17.
18.
Nonparametric methods for identifying differentially expressed genes in microarray data 总被引:11,自引:0,他引:11
Troyanskaya OG Garber ME Brown PO Botstein D Altman RB 《Bioinformatics (Oxford, England)》2002,18(11):1454-1461
MOTIVATION: Gene expression experiments provide a fast and systematic way to identify disease markers relevant to clinical care. In this study, we address the problem of robust identification of differentially expressed genes from microarray data. Differentially expressed genes, or discriminator genes, are genes with significantly different expression in two user-defined groups of microarray experiments. We compare three model-free approaches: (1). nonparametric t-test, (2). Wilcoxon (or Mann-Whitney) rank sum test, and (3). a heuristic method based on high Pearson correlation to a perfectly differentiating gene ('ideal discriminator method'). We systematically assess the performance of each method based on simulated and biological data under varying noise levels and p-value cutoffs. RESULTS: All methods exhibit very low false positive rates and identify a large fraction of the differentially expressed genes in simulated data sets with noise level similar to that of actual data. Overall, the rank sum test appears most conservative, which may be advantageous when the computationally identified genes need to be tested biologically. However, if a more inclusive list of markers is desired, a higher p-value cutoff or the nonparametric t-test may be appropriate. When applied to data from lung tumor and lymphoma data sets, the methods identify biologically relevant differentially expressed genes that allow clear separation of groups in question. Thus the methods described and evaluated here provide a convenient and robust way to identify differentially expressed genes for further biological and clinical analysis. 相似文献
19.
20.
Identification of genes differentially expressed across multiple conditions has become an important statistical problem in analyzing large-scale microarray data. Many statistical methods have been developed to address the challenging problem. Therefore, an extensive comparison among these statistical methods is extremely important for experimental scientists to choose a valid method for their data analysis. In this study, we conducted simulation studies to compare six statistical methods: the Bonferroni (B-) procedure, the Benjamini and Hochberg (BH-) procedure, the Local false discovery rate (Localfdr) method, the Optimal Discovery Procedure (ODP), the Ranking Analysis of F-statistics (RAF), and the Significant Analysis of Microarray data (SAM) in identifying differentially expressed genes. We demonstrated that the strength of treatment effect, the sample size, proportion of differentially expressed genes and variance of gene expression will significantly affect the performance of different methods. The simulated results show that ODP exhibits an extremely high power in indentifying differentially expressed genes, but significantly underestimates the False Discovery Rate (FDR) in all different data scenarios. The SAM has poor performance when the sample size is small, but is among the best-performing methods when the sample size is large. The B-procedure is stringent and thus has a low power in all data scenarios. Localfdr and RAF show comparable statistical behaviors with the BH-procedure with favorable power and conservativeness of FDR estimation. RAF performs the best when proportion of differentially expressed genes is small and treatment effect is weak, but Localfdr is better than RAF when proportion of differentially expressed genes is large. 相似文献