首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mutations in the Caenorhabditis elegans gene mec-8 were previously shown to cause defects in mechanosensation and in the structure and dye filling of certain chemosensory neurons. Using noncomplementation screens, we have identified eight new mec-8 alleles and a deficiency that uncovers the locus. Strong mec-8 mutants exhibit an incompletely penetrant cold-sensitive embryonic and larval arrest, which we have correlated with defects in the attachment of body muscle to the hypodermis and cuticle. Mutations in mec-8 strongly enhance the mutant phenotype of unc-52(viable) mutations; double mutants exhibit an unconditional arrest and paralysis at the twofold stage of embryonic elongation, a phenotype characteristic of lethal alleles of unc-52, a gene previously shown to encode a homolog of the core protein of heparan sulfate proteogylcan, found in basement membrane, and to be involved in the anchorage of myofilament lattice to the muscle cell membrane. We have identified and characterized four extragenic recessive suppressors of a mec-8; unc-52(viable) synthetic lethality. The suppressors, which define the genes smu-1 and smu-2, can weakly suppress all mec-8 mutant phenes. They also suppress the muscular dystrophy conferred by an unc-52(viable) mutation.  相似文献   

2.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

3.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.  相似文献   

4.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

5.
6.
Three mutant unc alleles (unc-408, unc-410, and unc-429) affecting the coupling of electron transport to oxidative phosphorylation in Escherichia coli K-12 have been characterized. Genetic complementation analyses using previously defined mutant unc alleles indicated that the new mutant unc alleles affect a previously undescribed gene designated uncE. The phenotype of strains carrying the uncE408 or uncE429 allele is similar in that Mg(2+)-adenosine triphosphatase activity is only found in the cytoplasmic fraction, and membranes do not bind the F(1) portion of adenosine triphosphatase purified from a normal strain. In contrast, adenosine triphosphatase activity is present both in the cytoplasm and on the membranes from a strain carrying the unc-410 allele, and normal F(1) binds to F(1)-depleted membranes from this strain. The adenosine triphosphatase solubilized from membranes of a strain carrying the unc-410 allele reconstituted ATP-dependent membrane energization in F(1)-depleted membranes from a normal strain. Genetic complementation tests using various Mu-induced unc alleles in partial diploid strains show that the uncE gene is in the unc operon and that the order of genes is uncB E A D C. The unc-410 allele differs from the uncE408 and uncE429 alleles in that complementation tests with the Mu-induced unc alleles indicate that more than one gene is affected. It is concluded that this is due to a deletion which includes part of the uncE gene and another gene, or genes, between the uncE and uncA genes.  相似文献   

7.
8.
Inherited cardiomyopathy (CM) represents a diverse group of cardiac muscle diseases that present with a broad spectrum of symptoms ranging from benign to highly malignant. Contributing to this genetic complexity and clinical heterogeneity is the emergence of a cohort of patients that are double or compound heterozygotes who have inherited two different CM mutant alleles in the same or different sarcomeric gene. These patients typically have early disease onset with worse clinical outcomes. Little experimental attention has been directed towards elucidating the physiologic basis of double CM mutations at the cellular-molecular level. Here, dual gene transfer to isolated adult rat cardiac myocytes was used to determine the primary effects of co-expressing two different CM-linked mutant proteins on intact cardiac myocyte contractile physiology. Dual expression of two CM mutants, that alone moderately increase myofilament activation, tropomyosin mutant A63V and cardiac troponin mutant R146G, were shown to additively slow myocyte relaxation beyond either mutant studied in isolation. These results were qualitatively similar to a combination of moderate and strong activating CM mutant alleles αTmA63V and cTnI R193H, which approached a functional threshold. Interestingly, a combination of a CM myofilament deactivating mutant, troponin C G159D, together with an activating mutant, cTnIR193H, produced a hybrid phenotype that blunted the strong activating phenotype of cTnIR193H alone. This is evidence of neutralizing effects of activating/deactivating mutant alleles in combination. Taken together, this combinatorial mutant allele functional analysis lends molecular insight into disease severity and forms the foundation for a predictive model to deconstruct the myriad of possible CM double mutations in presenting patients.  相似文献   

9.
Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line.  相似文献   

10.
Mutations in the unc-87 gene of Caenorhabditis elegans cause disorganization of the myofilament lattice in adult bodywall muscle. In order to assess the organization of specific bodywall muscle components in the absence of the unc-87 gene product, we examined the bodywall muscles of mutant animals using phalloidin and monoclonal antibodies to various muscle proteins. These studies indicated that the bodywall muscle of unc-87 embryos is initially almost wild type in its organization, but at later stages, the muscle becomes severely disorganized. To address the possibility that this disorganization is due to deterioration of the muscle as a result of contraction, we introduced into the unc-87 mutant background a mutation that decreases myosin heavy chain activity but does not substantially affect muscle structure. The improved muscle structure and motility of the double mutants are consistent with the hypothesis that at least part of the disorganization phenotype of unc-87 mutants is a consequence of the wild-type levels of force generated during muscle contraction. These results imply that the role of the unc-87 gene product is not in specifying organization but rather in serving as a structural component maintaining lattice integrity during and after contraction.  相似文献   

11.
We have identified five independent allelic mutations, defining the gene cha-1, that result in decreased choline acetyltransferase (ChAT) activity in Caenorhabditis elegans. Four of the mutant alleles, when homozygous, lead to ChAT reductions of>98%, as well as recessive phenotypes of uncoordinated behavior, small size, slow growth and resistance to cholinesterase inhibitors. Animals homozygous for the fifth allele retain approximately 10% of the wild-type enzyme level; purified enzyme from this mutant has altered Km values for both choline and acetyl-CoA and is more thermolabile than the wild-type enzyme. These qualitative alterations, together with gene dosage data, argue that cha-1 is the structural gene for ChAT. cha-1 has been mapped to the left arm of linkage group IV and is within 0.02 map unit of the gene unc-17, mutant alleles of which lead to all of the phenotypes of cha-1 mutants except for the ChAT deficiency. Extensive complementation studies of cha-1 and unc-17 alleles reveal a complex complementation pattern, suggesting that both loci may be part of a single complex gene.  相似文献   

12.
The mutations underlying Hurler syndrome (mucopolysaccharidosis IH) in Druze and Muslim Israeli Arab patients have been characterized. Four alleles were identified, using a combination of (a) PCR amplification of reverse-transcribed RNA or genomic DNA segments, (b) cycle sequencing of PCR products, and (c) restriction-enzyme analysis. One allele has two amino acid substitutions, Gly409-->Arg in exon 9 and Ter-->Cys in exon 14. The other three alleles have mutations in exon 2 (Tyr64-->Ter), exon 7 (Gln310-->Ter), or exon 8 (Thr366-->Pro). Transfection of mutagenized cDNAs into Cos-1 cells showed that two missense mutations, Thr366-->Pro and Ter-->Cys, permitted the expression of only trace amounts of alpha-L-iduronidase activity, whereas Gly409-->Arg permitted the expression of 60% as much enzyme as did the normal cDNA. The nonsense mutations were associated with abnormalities of RNA processing: (1) both a very low level of mRNA and skipping of exon 2 for Tyr64-->Ter and (2) utilization of a cryptic splice site for Gln310-->Ter. In all instances, the probands were found homozygous, and the parents heterozygous, for the mutant alleles, as anticipated from the consanguinity in each family. The two-mutation allele was identified in a family from Gaza; the other three alleles were found in seven families, five of them Druze, residing in a very small area of northern Israel. Since such clustering suggests a classic founder effect, the presence of three mutant alleles of the IDUA gene was unexpected.  相似文献   

13.
Summary The genetic organization of unc-26(IV) and adjacent regions was studied in Caenorhabditis elegans. We constructed a fine structure genetic map of unc-26(IV), a gene that affects locomotion and pharyngeal muscle movement but not muscle structure. Eleven alleles were positioned relative to each other recombinationally and were classified according to phenotypic severity. The unc-26 gene spans at least 0.026 map units, which is exceptionally large for a C. elegans gene. All but one allele, e205, are amorphic alleles. Interestingly, e205 is hypomorphic but also suppressible by the amber suppressor sup-7. Nineteen lethal mutations in the unc-26 region were isolated and characterized. The unc-26 region is subdivided into four zones by five deficiency breakpoints. These mutations fall into 15 complementation groups. The stages of development affected by these mutations were determined.  相似文献   

14.
Von Willebrand disease (vWD) is a common inherited bleeding disorder in humans, and can be divided into a mild (type 1) and severe (type 3) form. Previous linkage studies identified one subject with vWD type 1 who transmitted different alleles of the von Willebrand factor (vWF) gene to his two affected children, one having vWD type 3 and the other having type 1. By screening the promoter and coding sequence (52 exons) of the vWF gene, three missense mutations were detected in this family. The type 1 individual who transmitted different alleles of the gene to his two sick children carries two substitutions, one in exon 5 and the other in exon 18 on the respective alleles. The relationship between the genotype (mutations) and the phenotype in this family is complex. In order further to correlate the relationship in vWD type 1 individuals, fifty-five subjects who carry one null allele of the vWF gene were collected. All these subjects are from vWD type 3 families with known mutations. Biochemical data of these 55 subjects indicate that gene dosage and other factors, such as blood group, age, and environment factors, play a critical role in the development of the phenotype of the disease.  相似文献   

15.
The unc-4 gene of Caenorhabditis elegans encodes a homeodomain protein that defines synaptic input to ventral cord motor neurons. unc-4 mutants are unable to crawl backward because VA motor neurons are miswired with synaptic connections normally reserved for their sister cells, the VB motor neurons. These changes in connectivity are not accompanied by any visible effects upon neuronal morphology, which suggests that unc-4 regulates synaptic specificity but not axonal guidance or outgrowth. In an effort to identify other genes in the unc-4 pathway, we have devised a selection scheme for rare mutations that suppress the Unc-4 phenotype. We have isolated four, dominant, extragenic, allele-specific suppressors of unc-4(e2322ts), a temperature sensitive allele with a point mutation in the unc-4 homeodomain. Our data indicate that these suppressors are gain-of-function mutations in the previously identified unc-37 gene. We show that the loss-of-function mutation unc-37(e262) phenocopies the Unc-4 movement defect but does not prevent unc-4 expression or alter VA motor neuron morphology. These findings suggest that unc-37 functions with unc-4 to specify synaptic input to the VA motor neurons. We propose that unc-37 may be regulated by unc-4. Alternatively, unc-37 may encode a gene product that interacts with the unc-4 homeodomain.  相似文献   

16.
A Second Informational Suppressor, SUP-7 X, in CAENORHABDITIS ELEGANS   总被引:15,自引:14,他引:1  
More than 30 independent suppressor mutations have been obtained in the nematode C. elegans through reversion analysis of two unc-13 mutants. Many of the new isolates map to the region of the previously identified informational suppressor, sup-5 III (Waterston and Brenner 1978). Several of the other suppressor mutations map to the left half of the X-linkage group and define a second suppressor gene, sup-7 X. In tests against 40 mutations in six genes, the sup-7(st5) allele was found to suppress to a greater extent the same alleles acted on by sup-5(e1464). Like sup-5(e1464), sup-7(st5) acts on null alleles of the myosin heavy-chain gene unc-54 I (MacLeod et al. 1977; MacLeod, Waterston and Brenner 1977) and the putative paramyosin gene unc-15 I (Waterston et al. 1977). Chemical analysis of unc-15(e1214); sup-7(st5) animals show that paramyosin is restored to more than 30% of the wild-type level.—As was observed for sup-5(e1464), suppression by sup-7(st5) is dose dependent and is greater in animals grown at 15° than at 25°. However, associated with this increased suppression is a decreased viability of sup-7(st5) homozygotes. Reversion of the lethality has resulted in the isolation of deficiency mutations that complement st5 lethality, but lack suppressor function. These properties of sup-7(st5) suggest that it, like sup-5(e1464), is an informational suppressor of null alleles, and its reversion via deficiencies further narrows the possible explanations of its action.  相似文献   

17.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

18.
19.
Germline TP53 mutations result in cancer proneness syndromes known as Li-Fraumeni, Li-Fraumeni-like, and nonsyndromic predisposition with or without family history. To explore genotype/phenotype associations, we previously adopted a functional classification of all germline TP53 mutant alleles based on transactivation. Severe deficiency (SD) alleles were associated with more severe cancer proneness syndromes, and a larger number of tumors, compared with partial deficiency (PD) alleles. Because mutant p53 can exert dominant-negative (DN) effects, we addressed the relationship between DN and clinical manifestations. We reasoned that DN effects might be stronger in familial cancer cases associated with germline TP53 mutations, where mutant alleles coexist with the wild-type allele since conception. We examined 104 p53 mutant alleles with single amino acid substitutions described in the IARC germline database for (i) transactivation capability and (ii) capacity to reduce the activity of the wild-type allele (i.e., DN effect) using a quantitative yeast-based assay. The functional classifications of p53 alleles were then related to clinical variables. We confirmed that a classification based on transactivation alone can identify familial cancer cases with more severe clinical features. Classification based on DN effects allowed us to highlight similar associations but did not reveal distinct clinical subclasses of SD alleles, except for a correlation with tumor tissue prevalence. We conclude that in carriers of germline TP53 mutations transactivation-based classification of TP53 alleles appears more important for genotype/phenotype correlations than DN effects and that haplo-insufficiency of the TP53 gene is an important factor in cancer proneness in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号