首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

2.
Connective tissue growth factor (CCN2, also known as CTGF) is a matricellular protein that appears to play an important role in hepatic stellate cell (HSC)-mediated fibrogenesis. After signal peptide cleavage, the full-length CCN2 molecule comprises four structural modules (CCN2(1-4)) and is susceptible to proteolysis by HSC yielding isoforms comprising essentially modules 3 and 4 (CCN2(3-4)) or module 4 alone (CCN2(4)). In this study we show that rat activated HSC are capable of adhesion to all three CCN2 isoforms via the binding of module 4 to integrin alpha(v)beta(3), a process that is dependent on interactions between module 4 and cell surface heparan sulfate proteoglycans (HSPGs). These findings are based on several lines of evidence. First, integrin alpha(v)beta(3) was detected in HSC lysates by immunoprecipitation and Western blot, and CCN2(4)-mediated HSC adhesion was blocked by anti-integrin alpha(v)beta(3) antibody. Second, as assessed by immunoprecipitation and solid phase binding assay, CCN2(4) bound directly to integrin alpha(v)beta(3) in cell-free systems. Third, destruction or inhibition of synthesis of cell surface HSPGs with, respectively, heparinase or sodium chlorate abrogated HSC adhesion to CCN2(4). Fourth, prior occupancy of heparin-binding sites on CCN2(4) with soluble heparin completely blocked HSC adhesion. These findings indicate that integrin alpha(v)beta(3) functions as a co-receptor with HSPGs for CCN2(4)-mediated HSC adhesion. Furthermore, by peptide mapping and site-directed mutagenesis we demonstrated that the sequence IRTPKISKPIKFELSG within CCN2(4) is a unique binding domain for integrin alpha(v)beta(3) that is sufficient to mediate integrin alpha(v)beta(3)- and HSPG-dependent HSC adhesion. These findings offer the possibility of developing novel antifibrotic therapies that target the integrin-binding domain.  相似文献   

3.
CCN1 (CYR61) is a matricellular inducer of angiogenesis essential for successful vascular development. Though devoid of the canonical RGD sequence motif recognized by some integrins, CCN1 binds to, and functions through integrin alphavbeta3 to promote pro-angiogenic activities in activated endothelial cells. In this study we identify a 20-residue sequence, V2 (NCKHQCTCIDGAVGCIPLCP), in domain II of CCN1 as a novel binding site for integrin alphavbeta3. Immobilized synthetic V2 peptide supports alphavbeta3-mediated cell adhesion; soluble V2 peptide inhibits endothelial cell adhesion to CCN1 and the homologous family members CCN2 (connective tissue growth factor, CTGF) or CCN3 (NOV) but not to collagen. These activities are obliterated by mutation of the aspartate residue in the V2 peptide to alanine. The corresponding D125A mutation in the context of the N-terminal half of CCN1 (domains I and II) greatly diminished direct solid phase binding to purified integrin alphavbeta3 and abolished alphavbeta3-mediated cell adhesion activity. Likewise, soluble full-length CCN1 with the D125A mutation is defective in binding purified alphavbeta3 and impaired in alphavbeta3-mediated pro-angiogenic activities in vascular endothelial cells, including stimulation of cell migration and enhancement of DNA synthesis. In contrast, immobilized full-length CCN1-D125A mutant binds alphavbeta3 and supports alphavbeta3-mediated cell adhesion similar to wild type CCN1. These results indicate that V2 is the primary alphavbeta3 binding site in soluble CCN1, whereas additional cryptic alphavbeta3 binding site(s) in the C-terminal half of CCN1 becomes exposed when the protein is immobilized. Together, these results identify a novel and functionally important binding site for integrin alphavbeta3 and provide a new approach for dissecting alphavbeta3-specific CCN1 functions both in cultured cells and in the organism.  相似文献   

4.
The leukocyte integrin alphaMbeta2 (Mac-1) is a multiligand receptor that mediates a range of adhesive reactions of leukocytes during the inflammatory response. This integrin binds the coagulation protein fibrinogen providing a key link between thrombosis and inflammation. However, the mechanism by which alphaMbeta2 binds fibrinogen remains unknown. Previous studies indicated that a model in which two fibrinogen gammaC domain sequences, P1 (gamma190-202) and P2 (gamma377-395), serve as the alphaMbeta2 binding sites cannot fully account for recognition of fibrinogen by integrin. Here, using surface plasmon resonance, we examined the interaction of the ligand binding alphaMI-domain of alphaMbeta2 with the D fragment of fibrinogen and showed that this ligand is capable of associating with several alphaMI-domain molecules. To localize the alternative alphaMI-domain binding sites, we screened peptide libraries covering the complete sequences of the gammaC and betaC domains, comprising the majority of the D fragment structure, for alphaMI-domain binding. In addition to the P2 and P1 peptides, the alphaMI-domain bound to many other sequences in the gammaC and betaC scans. Similar to P1 and P2, synthetic peptides derived from gammaC and betaC were efficient inhibitors of alphaMbeta2-mediated cell adhesion and were able to directly support adhesion suggesting that they contain identical recognition information. Analyses of recognition specificity using substitutional peptide libraries demonstrated that the alphaMI-domain binding depends on basic and hydrophobic residues. These findings establish a new model of alphaMbeta2 binding in which the alphaMI-domain interacts with multiple sites in fibrinogen and has the potential to recognize numerous sequences. This paradigm may have implications for mechanisms of promiscuity in ligand binding exhibited by integrin alphaMbeta2.  相似文献   

5.
Searching for CCN family protein 2/connective tissue growth factor (CCN2/CTGF) interactive proteins by yeast-two-hybrid screening, we identified fibronectin 1 gene product as a major binding partner of CCN2/CTGF in the chondrosarcoma-derived chondrocytic cell line HCS-2/8. Only the CT domain of CCN2/CTGF bound directly to fibronectin (FN). CCN2/CTGF and its CT domain enhanced the adhesion of HCS-2/8 cells to FN in a dose-dependent manner. The CCN2/CTGF-enhancing effect on cell adhesion to FN was abolished by a blocking antibody against alpha5beta1 integrin (alpha5beta1), but not by one against anti-alphavbeta3 integrin. These findings suggest for the first time that CCN2/CTGF enhances chondrocyte adhesion to FN through direct interaction of its C-terminal CT domain with FN, and that alpha5beta1 is involved in this adhesion.  相似文献   

6.
Monocyte recruitment from the blood in response to chemoattractant gradients is a key phenomenon in inflammation. Various extracellular matrix proteins, at the site of inflammation, have chemoattractant activity and mediate monocyte adhesion and migration as ligands of integrins. In this report, we demonstrate that transforming growth factor-beta-induced gene product (betaig-h3/TGFBIp), as an extracellular matrix protein, mediates monocytes adhesion under both static and flow conditions mainly through integrin alphaMbeta2. Fasciclin 1 domains of betaig-h3/TGFBIp are responsible for the interaction with integrin alphaMbeta2, not only enhances monocyte migration in both chemotactic and haptotactic manners but also mediates their transendothelial migration and subendothelial matrix invasion. These activities are also mediated through integrin alphaMbeta2. Intraperitoneal injection of betaig-h3/TGFBIp promotes the recruitment of monocytes but not neutrophils. Our results demonstrate that betaig-h3/TGFBIp produced at inflammatory sites is a novel chemoattractant for monocytes and interacts with integrin alphaMbeta2 to serve as a substrate for their migration, suggesting that betaig-h3/TGFBIp plays an important role in inflammation.  相似文献   

7.
The red cell intercellular adhesion molecule-4 (ICAM-4) binds to different members of the integrin receptor families. To better define the ICAM-4 integrin receptor specificity, cell transfectants individually expressing various integrins were used to demonstrate that alphaLbeta2, alphaMbeta2, and alphaIIbbeta3 (activated) bind specifically and dose dependently to the recombinant ICAM-4-Fc protein. We also show that cell surface ICAM-4 interacts with the cell surface alphaVbeta3 integrin. In addition, using a alpha4beta1 cell transfectant and beta2 integrin-deficient LAD cells, we show here that ICAM-4 failed to interact with alpha4beta1 even after alpha4beta1 activation by phorbol ester or with the monoclonal antibody TS2/16 (+ Mn2+). ICAM-4 amino acids that are critical for alphaIIbbeta3 and alphaVbeta3 interaction were identified by domain deletion analysis, site-directed mutagenesis and synthetic peptide inhibition. Our results provide evidence that the beta3 integrin binding sites encompass the first and second Ig-like domains of ICAM-4. However, while the alphaIIbbeta3 contact site comprises the ABED face of domain D1 with an extension in the C'-E loop of domain D2, the alphaVbeta3 contact site comprises residues on both faces of D1 and in the C'-E loop of D2. These data, together with our previous results, demonstrate that different integrins bind to different but partly overlapping sites on ICAM-4, and that ICAM-4 may accommodate multiple integrin receptors present on leukocytes, platelets and endothelial cells.  相似文献   

8.
Insulitis is a hallmark feature of autoimmune diabetes that ultimately results in islet beta-cell destruction. We examined integrin requirements and specific inhibition of integrin structure in T cell and monocyte adhesion to pancreatic islet endothelium. Examination of cell surface integrin expression on WEHI 7.1 T cells revealed prominent expression of beta-, beta(1)-, alpha(L)-integrins, and low expression of alpha(M)-integrins; whereas WEHI 274.1 monocytes showed significant staining for beta(2)-, beta(1)-, alpha(M)-molecules and no expression of alpha(L)-molecules. Unstimulated islet endothelium showed constitutive levels of ICAM-1 counter-ligand expression with minimal VCAM-1 expression; however, TNF-alpha stimulation increased cell surface density of both molecules. TNF-alpha increased T cell and monocyte rolling and adhesion under hydrodynamic flow conditions. Administration of a cyclic peptide competitor for the alpha(L)-integrin I domain binding sites (cyclo1,12-PenITDGEATDSGC) blocked T cell adhesion without inhibiting monocyte adhesion. Examination of T cell rolling revealed that cLAB.L treatment increased the average rolling velocity on activated endothelium and significantly decreased the fraction of T cells rolling at < or =50 microm/s, suggesting that cLAB.L treatment interferes with signal activation events required for the conversion of T cell rolling to firm adhesion. These data demonstrate for the first time that cyclic peptide antagonists against alpha(L)-integrin I domain attenuate T cell recruitment to islet endothelium.  相似文献   

9.
The purpose of this study was to identify the binding site(s) within laminin for the alpha 3 beta 1 integrin receptor. It has been previously shown, using proteolytic fragments and anti-laminin antibodies, that the region in laminin for alpha 3 beta 1 integrin binding is localized to the carboxy-terminal region at the end of the long arm (Gehlsen, K. R., E. Engvall, K. Dickerson, W. S. Argraves, and E. Ruoslahti. 1989. J. Biol. Chem. 264:19034-19038; Tomaselli, K. J., D. E. Hall, L. T. Reichardt, L. A. Flier, K. R. Gehlsen, D. C. Turner, and S. Carbonetto. 1990. Neuron. 5:651-662). Using synthetic peptides, we have identified an amino acid sequence within the carboxy-terminal region of the laminin A chain that is recognized by the alpha 3 beta 1 integrin. The amino acid sequence represented by the synthetic peptide GD-6 (KQNCLSSRASFRGCVRNLRLSR residues numbered 3011 to 3032) of the globular domain of the murine A chain supports cell attachment and inhibits cell adhesion to laminin-coated surfaces. By affinity chromatography, peptide GD-6-Sepharose specifically bound solubilized alpha 3 beta 1 from extracts of surface-iodinated cells in a cation-dependent manner, while it did not bind other integrins. In addition, exogenous peptide GD-6 specifically eluted bound alpha 3 beta 1 from laminin-Sepharose columns but did not elute the alpha 3 beta 1 integrin from a fibronectin-Sepharose column. Using integrin subunit-specific monoclonal antibodies, only those antibodies against the alpha 3 and beta 1 subunits inhibited cell adhesion to peptide GD-6-coated surfaces. Finally, a polyclonal antibody made against peptide GD-6 reacted specifically with both murine and human laminin and significantly inhibited cell adhesion to laminin-coated surfaces but not those coated with other matrix proteins. These results identify the laminin A chain amino acid sequence of peptide GD-6 as representing a binding site in laminin for the alpha 3 beta 1 integrin.  相似文献   

10.
The alpha M beta 2 integrin of leukocytes can bind a variety of ligands. We screened phage display libraries to isolate peptides that bind to the alpha M I domain, the principal ligand binding site of the integrin. Only one peptide motif, (D/E)(D/E)(G/L)W, was obtained with this approach despite the known ligand binding promiscuity of the I domain. Interestingly, such negatively charged sequences are present in many known beta 2 integrin ligands and also in the catalytic domain of matrix metalloproteinases (MMPs). We show that purified beta 2 integrins bind to pro-MMP-2 and pro-MMP-9 gelatinases and that that the negatively charged sequence of the MMP catalytic domain is an active beta 2 integrin-binding site. Furthermore, a synthetic DDGW-containing phage display peptide inhibited the ability of beta 2 integrin to bind progelatinases but did not inhibit the binding of cell adhesion-mediating substrates such as intercellular adhesion molecule-1, fibrinogen, or an LLG-containing peptide. Immunoprecipitation and cell surface labeling demonstrated complexes of pro-MMP-9 with both the alpha M beta 2 and alpha L beta 2 integrins in leukocytes, and pro-MMP-9 colocalized with alpha M beta 2 in cell surface protrusions. The DDGW peptide and the gelatinase-specific inhibitor peptide CTTHWGFTLC blocked beta 2 integrin-dependent leukocyte migration in a transwell assay. These results suggest that leukocytes may move in a progelatinase-beta 2 integrin complex-dependent manner.  相似文献   

11.
Microfibril-associated glycoprotein (MAGP)-1 and MAGP-2 are small structurally related glycoproteins that are specifically associated with fibrillin-containing microfibrils. MAGP-2, unlike MAGP-1, contains an RGD motif with potential for integrin binding. To determine if the RGD sequence is active, a series of cell binding assays was performed. MAGP-2 was shown to promote the attachment and spreading of bovine nuchal ligament fibroblasts when coated onto plastic wells in molar quantities similar to those of fibronectin. In contrast, approximately 10-fold more MAGP-1 was required to support comparable levels of cell adhesion. The fibroblast binding to MAGP-2 was completely inhibited if the peptide GRGDSP or the MAGP-2-specific peptide GVSGQRGDDVTTVTSET was added to the reaction medium at a 10 microM final concentration. The control peptide GRGESP had no effect on the interaction. These findings indicate that the cell interaction with MAGP-2 is an RGD-mediated event. A monoclonal antibody to human alphaVbeta3 integrin (LM609) almost completely blocked cell attachment to MAGP-2 when added to the medium at 0.5 microgram/ml, whereas two monoclonal antibodies specific for the human beta1 integrin subunit, 4B4 (blocking) and QE2.E5 (activating), had no effect even at 10 microgram/ml. Fetal bovine aortic smooth muscle cells, ear cartilage chondrocytes, and arterial endothelial cells and human skin fibroblasts and osteoblasts were also observed to adhere strongly to MAGP-2. In addition, each cell type was able to spread on MAGP-2 substrate, with the exception of the endothelial cells, which remained spherical after 2 h of incubation. The binding of each cell type was blocked when the anti-alphaVbeta3 integrin antibody was included in the assay, indicating that alphaVbeta3 integrin is the major receptor for MAGP-2 on several cell types. Thus, MAGP-2 may mediate interactions between fibrillin-containing microfibrils and cell surfaces during the development of a variety of tissues.  相似文献   

12.
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.  相似文献   

13.
Antiangiogenic activity can be elicited by the kringle domains 1 and 2 of tissue-type plasminogen activator (TK1-2), or the kringle 2 domain alone. In a previous report, we showed that the anti-migratory effect of TK1-2 is mediated in part by its interference with integrin α2β1. Since integrin α2β1 interacts with collagen type I through the DGEA (Asp-Gly-Glu-Ala) amino acid sequence, and a similar sequence, DGDA (Asp-Gly-Asp-Ala), exists in the kringle 2 domain, we investigated whether the DGDA sequence has a role in antiangiogenic activity of TK1-2. In an adhesion assay, the DGDA peptide inhibited adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized TK1-2. Pretreatment of the DGDA peptide also blocked anti-migratory activity of TK1-2. When the DGDA peptide alone was tested for antiangiogenic activity, it effectively inhibited VEGF-induced migration of HUVECs and tube formation on Matrigel. In addition, the DGDA peptide decreased differentiation of endothelial progenitor cells on collagen type I matrix. These data suggest that the DGDA sequence presents a functional epitope of TK1-2 and that it can be used as a potential novel antiangiogenic peptide.  相似文献   

14.
Integrin alphaMbeta2 (Mac-1, CD11b/CD18) is a noncovalently linked heterodimer of alphaM and beta2 subunits on the surface of leukocytes, where it plays a pivotal role in the adhesion and migration of these cells. Using HEK293 cells expressing alphaMbeta2 or the individual constituent chains on their surface, we analyzed the contributions of the alphaM or beta2 subunits to functional responses mediated by the integrin. In cells expressing only alphaM or beta2, the individual subunits were not associated with the endogenous integrins of the cells, and other partners for the subunits were not detected by surface labeling and immunoprecipitation under a variety of conditions. The alphaM cells mediated adhesion and spreading on a series of alphaMbeta2 ligands (fibrinogen, Factor X, iC3b, ICAM-1 (intercellular adhesion molecule-1), and denatured ovalbumin) but could not support cell migration to any of these. The spreading of the alphaM cells suggested an unanticipated linkage of this subunit to the cytoskeleton. The beta2 cells supported migration and attachment but not spreading on a subset of the alphaMbeta2 ligands. The heterodimeric receptor and its individual subunits were purified from the cells by affinity chromatography and recapitulated the ligand binding properties of the corresponding cell lines. These data indicate that each subunit of alphaMbeta2 contributes distinct properties to alphaMbeta2 and that, in most but not all cases, the response of the integrin is a composite of the functions of its individual subunits.  相似文献   

15.
BACKGROUND: beta2 integrins mediate many aspects of the inflammatory and immune responses, including adhesion of leukocytes to the endothelium, complement-mediated phagocytosis in macrophages and neutrophils, and antigen-specific conjugate formation between cytotoxic T cells and their targets. A variety of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha), platelet-activating factor (PAF), and lipopolysaccharide (LPS) and other bacterial products induce the functional activation of beta2 integrins, but the signaling events that link membrane receptors to integrin activation are poorly understood. RESULTS: We report here that expression of the constitutively active small GTPases Rap1 or R-ras, but not Ras or RalA, is sufficient for functional activation of alphaMbeta2, the complement receptor 3 (CR3), in macrophages, allowing phagocytosis of C3bi-opsonized targets. Inhibition of Rap1, but not other Ras-like or Rho-like small GTPases, abolishes activation of alphaMbeta2 induced by phorbol esters, LPS, TNF-alpha or PAF. Finally, Rap1 activation specifically controls the binding properties of alphaMbeta2 towards its physiological ligand, namely the complement-opsonized phagocytic targets. CONCLUSIONS: In macrophages, the Rap1 GTPase regulates activation of the alphaMbeta2 integrin in response to a wide variety of inflammatory mediators.  相似文献   

16.
The integrin alpha(9)beta(1) mediates cell adhesion to tenascin-C and VCAM-1 by binding to sequences distinct from the common integrin-recognition sequence, arginine-glycine-aspartic acid (RGD). A thrombin-cleaved NH(2)-terminal fragment of osteopontin containing the RGD sequence has recently been shown to also be a ligand for alpha(9)beta(1). In this report, we used site-directed mutagenesis and synthetic peptides to identify the alpha(9)beta(1) recognition sequence in osteopontin. alpha(9)-transfected SW480, Chinese hamster ovary, and L-cells adhered to a recombinant NH(2)-terminal osteopontin fragment in which the RGD site was mutated to RAA (nOPN-RAA). Adhesion was completely inhibited by anti-alpha(9) monoclonal antibody Y9A2, indicating the presence of a non-RGD alpha(9)beta(1) recognition sequence within this fragment. Alanine substitution mutagenesis of 13 additional conserved negatively charged amino acid residues in this fragment had no effect on alpha(9)beta(1)-mediated adhesion, but adhesion was dramatically inhibited by either alanine substitution or deletion of tyrosine 165. A synthetic peptide, SVVYGLR, corresponding to the sequence surrounding Tyr(165), blocked alpha(9)beta(1)-mediated adhesion to nOPN-RAA and exposed a ligand-binding-dependent epitope on the integrin beta(1) subunit on alpha(9)-transfected, but not on mock-transfected cells. These results demonstrate that the linear sequence SVVYGLR directly binds to alpha(9)beta(1) and is responsible for alpha(9)beta(1)-mediated cell adhesion to the NH(2)-terminal fragment of osteopontin.  相似文献   

17.
The interaction of lymphocytes with other cells is critical for normal immune surveillance and response. MDC-L (ADAM 28), a member of the ADAM (a disintegrin and metalloprotease) protein family, is expressed on the surface of human lymphocytes. ADAMs possess a disintegrin-like domain similar in sequence to small non-enzymatic snake venom peptides that act as integrin antagonists. We report here that the disintegrin domain of MDC-L is recognized by the leukocyte integrin alpha(4)beta(1). Recombinant Fc fusion proteins possessing the disintegrin domain of MDC-L supported adhesion of the T-lymphoma cell line, Jurkat, in a concentration- and divalent cation-dependent manner. Adhesion of Jurkat cells to the disintegrin domain of MDC-L was inhibited by an anti-MDC-L monoclonal antibody (mAb), Dis1-1. The epitope for mAb Dis1-1 was localized within 59 residues of the disintegrin domain. Recombinant expression of this 59-residue fragment of the disintegrin domain also supported cell adhesion. Adhesion of Jurkat cells to the MDC-L disintegrin domain was specifically inhibited by anti-alpha(4) and anti-beta(1) function-blocking mAbs. Furthermore, adhesion of various cell lines to MDC-L correlated with expression of the integrin alpha(4)-subunit. Transfected K562 cells expressing alpha(4)beta(1) adhered to the disintegrin domain in contrast to non-transfected K562 cells. We further investigated the binding of recombinant MDC-L disintegrin domain (rDis-Fc) in solution. The rDis-Fc was found to bind to Jurkat cells in solution in a concentration-dependent and saturable manner. Both adhesion and solution binding of rDis-Fc was inhibited by the alpha(4)beta(1) ligand mimetic CS-1 peptide. Additionally, recognition of the MDC-L disintegrin domain required "activation" of lymphocyte beta(1) integrins. The interaction of MDC-L with alpha(4)beta(1) may potentially regulate metalloprotease function by targeting or sequestering the active protease on the cell surface. These results suggest a potential role for the lymphocyte ADAM, MDC-L, in the interaction of lymphocytes with alpha(4)beta(1)-expressing leukocytes.  相似文献   

18.
The involvement of integrins in mediating interaction of cells to well-characterized proteolytic fragments (P1, E3, and E8) of laminin was assessed by antibody blocking studies. Cell adhesion to fragment P1 was affected by mAbs against the integrin beta 1 and beta 3 subunits and furthermore could be prevented completely by a synthetic peptide containing the Arg-Gly-Asp sequence. Because the beta 3 antibody-sensitive cell lines expressed the vitronectin receptor (alpha v beta 3) at high levels, the involvement of this receptor in cell adhesion to P1 is strongly suggested. Integrin-mediated cell adhesion to E3 is of low affinity and was inhibited by antibodies against the integrin beta 1 subunit. In contrast, adhesion of some cell types to E3 was not or only partially sensitive to inhibition by anti-integrin subunit antibodies. Cell adhesion to E8 was blocked completed by integrin alpha 6 or beta 1 antibodies. The alpha 6-specific antibody did not inhibit cell adhesion to E3 or P1. Furthermore, the antibody only blocked adhesion to laminin of those cells that adhered exclusively to the E8 fragment. In addition, expression of alpha 6 beta 1 was closely correlated with the ability of cells to bind to the E8 fragment of laminin. These results indicate that the alpha 6 beta 1 integrin is a specific receptor for the E8 fragment of laminin. Many cell types expressed, instead of or in addition to alpha 6 beta 1 the recently described integrin alpha 6 beta 4. Although the ligand of alpha 6 beta 4 was not identified, it must be different from that of alpha 6 beta 1, because cells that express alpha 6 beta 4, but not alpha 6 beta 1, do not adhere to E8, and cell adhesion to E8 was specifically blocked by beta 1 specific antibodies. In conclusion, the data indicate that distinct integrin receptors belonging to the beta 1 or beta 3 subfamily are involved in adhesion of cells to the various laminin fragments. Adhesion to E3 may also be brought about by other receptor molecules, possibly proteoglycans, not belonging to the integrin family.  相似文献   

19.
The matricellular protein CCN1 (CYR61) regulates multiple cellular processes and plays essential roles in embryonic vascular development. A ligand of several integrin receptors, CCN1 acts through integrin alpha6beta1 and heparan sulfate proteoglycans (HSPGs) to promote specific functions in fibroblasts, smooth muscle cells, and endothelial cells. We have previously identified a novel alpha6beta1 binding site, T1, in domain III of CCN1. Here we uncover two novel 16-residue sequences, H1 and H2, in domain IV that can support alpha6beta1- and HSPGs-dependent cell adhesion, suggesting that these sequences contain closely juxtaposed or overlapping sites for interaction with alpha6beta1 and HSPGs. Furthermore, fibroblast adhesion to the H1 and H2 peptides is sufficient to induce prolonged MAPK activation, whereas adhesion to T1 induces transient MAPK activation. To dissect the roles of these sites in CCN1 function, we have created mutants disrupted in T1, H1, and H2 or in all three sites in the context of full-length CCN1. We show that the T1 and H1/H2 sites are functionally non-equivalent, and disruption of these sites differentially affected cell adhesion, migration, mitogen-activated protein kinase activation, and regulation of gene expression. Disruption of all three sites completely abolished alpha6beta1-HSPG-mediated cellular activities. All mutants disrupting T1, H1, and H2 fully retain alphavbeta3-mediated pro-angiogenic activities, indicating that these mutants are biologically active and are defective only in alpha6beta1-HSPG-mediated functions. Together, these findings identify and dissect the differential roles of the three sites (T1, H1, H2) required for alpha6beta1-HSPG-dependent CCN1 activities and provide a strategy to investigate these alpha6beta1-HSPG-specific activities in vivo.  相似文献   

20.
Proteolytic cleavage of single chain high molecular weight kininogen (HK) by kallikrein releases the short-lived vasodilator bradykinin and leaves behind two-chain high molecular weight kininogen (HKa). HKa and particularly its His-Gly-Lys-rich domain 5 have been previously reported to exert anti-adhesive properties by binding to the extracellular matrix protein vitronectin (VN). In this study the ability of HKa and domain 5 to interfere with platelet adhesion and aggregation was investigated. In a purified system HKa and particularly domain 5 but not HK inhibited the binding of VN to the alpha(IIb)beta(3) integrin, whereas the binding of fibrinogen to this integrin was not affected. The region Gly-486-Lys-502 from the carboxyl terminus of the domain 5 was identified as responsible for inhibition of the VN-alpha(IIb)beta(3)-integrin interaction, as this portion was also found to mediate kininogen binding to VN. Through these interactions, HKa, the isolated domain 5, and the peptide Gly-486-Lys-502 abrogated the alpha(IIb)beta(3)-integrin-dependent adhesion of human platelets to VN but not to fibrinogen. The codistribution of VN and HKa at sites of ex vivo platelet aggregation was demonstrated by transmission immune electron microscopy, indicating that the described interaction is likely to take place in vivo. Moreover, domain 5 and the peptide Gly-486-Lys-502 dose-dependently blocked platelet aggregation, resembling the inhibitory effect of monoclonal antibody 13H1 against multimeric VN. Finally, treatment of mice with isolated domain 5 resulted in a significantly prolonged tail bleeding time. Taken together, our data emphasize the inhibitory role of HK domain 5 on platelet adhesion and aggregation; new anti-thrombotic compounds may become available on the basis of peptide Gly-486-Lys-502 of HK domain 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号