首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.  相似文献   

2.
Recent studies indicate that the mechanism of nasopharynx-associated lymphoid tissue (NALT) organogenesis is different from that of other lymphoid tissues. NALT has an important role in the induction of mucosal immune responses, including the generation of T helper 1 and T helper 2 cells, and IgA-committed B cells. Moreover, intranasal immunization can lead to the induction of antigen-specific protective immunity in both the mucosal and systemic immune compartments. Therefore, a greater understanding of the differences between NALT and other organized lymphoid tissues, such as Peyer's patches, should facilitate the development of nasal vaccines.  相似文献   

3.
The current knowledge about early innate immune responses at mucosal sites of human immunodeficiency virus (HIV) entry is limited but likely to be important in the design of effective HIV vaccines against heterosexual transmission. This study examined the temporal and anatomic relationship between virus replication, lymphocyte depletion, and cytokine gene expression levels in mucosal and lymphoid tissues in a vaginal-transmission model of HIV in rhesus macaques. The results of the study show that the kinetics of cytokine gene expression levels in the acute phase of infection are positively correlated with virus replication in a tissue. Thus, cytokine responses after vaginal simian immunodeficiency virus (SIV) inoculation are earliest and strongest in mucosal tissues of the genital tract and lowest in systemic lymphoid tissues. Importantly, the early cytokine response was dominated by the induction of proinflammatory cytokines, while the induction of cytokines with antiviral activity, alpha/beta interferon, occurred too late to prevent virus replication and dissemination. Thus, the early cytokine response favors immune activation, resulting in the recruitment of potential target cells for SIV. Further, unique cytokine gene expression patterns were observed in distinct anatomic locations with a rapid and persistent inflammatory response in the gut that is consistent with the gut being the major site of early CD4 T-cell depletion in SIV infection.  相似文献   

4.
Roundtrip ticket for secretory IgA: role in mucosal homeostasis?   总被引:9,自引:0,他引:9  
An important activity of mucosal surfaces is the production of Ab referred to as secretory IgA (SIgA). SIgA serves as the first line of defense against microorganisms through a mechanism called immune exclusion. In addition, SIgA adheres selectively to M cells in intestinal Peyer's patches, thus mediating the transepithelial transport of the Ab molecule from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA binds and is internalized by dendritic cells in the subepithelial dome region. When used as carrier for Ags in oral immunization, SIgA induces mucosal and systemic responses associated with production of anti-inflammatory cytokines and limits activation of dendritic cells. In terms of humoral immunity at mucosal surfaces, SIgA appears thus to combine properties of a neutralizing agent (immune exclusion) and of a mucosal immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis of the gastrointestinal tract.  相似文献   

5.
A vaccine to protect human immunodeficiency virus (HIV)-exposed infants is an important goal in the global fight against the HIV pandemic. Two major challenges in pediatric HIV vaccine design are the competence of the neonatal/infant immune system in comparison to the adult immune system and the frequent exposure to HIV via breast-feeding. Based on the hypothesis that an effective vaccine needs to elicit antiviral immune responses directly at the site of virus entry, the pattern of virus dissemination in relation to host immune responses was determined in mucosal and lymphoid tissues of infant macaques at 1 week after multiple oral exposures to simian immunodeficiency virus (SIV). The results show that SIV disseminates systemically by 1 week. Infant macaques can respond rapidly to virus challenge and mount strong innate immune responses. However, despite systemic infection, these responses are most pronounced in tissues close to the viral entry site, with the tonsil being the primary site of virus replication and induction of immune responses. Thus, distinct anatomic compartments are characterized by unique cytokine gene expression patterns. Importantly, the early response at mucosal entry sites is dominated by the induction of proinflammatory cytokines, while cytokines with direct antiviral activity, alpha/beta interferons, are only minimally induced. In contrast, both antiviral and proinflammatory cytokines are induced in lymphoid tissues. Thus, although infant macaques can respond quickly to oral viral challenge, the locally elicited immune responses at mucosal entry sites are likely to favor immune activation and thereby virus replication and are insufficient to limit virus replication and dissemination.  相似文献   

6.
Recent studies indicate that chemoattractant cytokines (chemokines), together with tissue-specific adhesion molecules, coordinate the migration of antibody-secreting cells (ASCs) from their sites of antigen-driven differentiation in lymphoid tissues to target effector tissues. Developing ASCs downregulate the expression of receptors for lymphoid tissue chemokines and selectively upregulate the expression of chemokine receptors that might target the migration of IgA ASCs to mucosal surfaces, IgG ASCs to sites of tissue inflammation and both types of ASC to the bone marrow - an important site for serum antibody production. By directing plasma-cell homing, chemokines might help to determine the character and efficiency of mucosal, inflammatory and systemic antibody responses.  相似文献   

7.

Background  

Immunosenescence is the age-related decline and dysfunction of protective immunity leading to a marked increase in the risk of infections, autoimmune disease, and cancer. The majority of studies have focused on immunosenescence in the systemic immune system; information concerning the effect of aging on intestinal immunity is limited. Isolated lymphoid follicles (ILFs) are newly appreciated dynamic intestinal lymphoid structures that arise from nascent lymphoid tissues, or cryptopatches (CP), in response to local inflammatory stimuli. ILFs promote "homeostatic" responses including the production of antigen-specific IgA, thus playing a key role in mucosal immune protection. ILF dysfunction with aging could contribute to immunosenescence of the mucosal system, and accordingly we examined phenotypic and functional aspects of ILFs from young (2 month old) and aged (2 year old) mice.  相似文献   

8.
The strongest mucosal immune responses are induced following mucosal Ag delivery and processing in the mucosal lymphoid tissues, and much is known regarding the immunological parameters which regulate immune induction via this pathway. Recently, experimental systems have been identified in which mucosal immune responses are induced following nonmucosal Ag delivery. One such system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP), led to the local production of IgA Abs directed against both expressed and codelivered Ags at multiple mucosal surfaces in mice. In contrast to the mucosal delivery pathway, little is known regarding the lymphoid structures and immunological components that are responsible for mucosal immune induction following nonmucosal delivery. In this study, we have used footpad delivery of VRP to probe the constituents of this alternative pathway for mucosal immune induction. Following nonmucosal VRP delivery, J chain-containing, polymeric IgA Abs were detected in the peripheral draining lymph node (DLN), at a time before IgA detection at mucosal surfaces. Further analysis of the VRP DLN revealed up-regulated alpha4beta7 integrin expression on DLN B cells, expression of mucosal addressin cell adhesion molecule 1 on the DLN high endothelia venules, and production of IL-6 and CC chemokines, all characteristics of mucosal lymphoid tissues. Taken together, these results implicate the peripheral DLN as an integral component of an alternative pathway for mucosal immune induction. A further understanding of the critical immunological and viral components of this pathway may significantly improve both our knowledge of viral-induced immunity and the efficacy of viral-based vaccines.  相似文献   

9.
The mucosal immune system is uniquely equipped to discriminate between potentially invasive pathogens and innocuous food proteins. While the mechanisms responsible for induction of mucosal immunity vs tolerance are not yet fully delineated, recent studies have highlighted mucosal dendritic cells (DC) as being important in determining the fate of orally administered Ag. To further investigate the DC:T cell signals involved in regulating the homeostatic balance between mucosal immunity and tolerance, we have examined the expression and function of the TNFR family member receptor activator of NF-kappaB (RANK) and its cognate ligand, RANKL, in vitro and in vivo. Our data show that although DC isolated from mucosal lymphoid tissues expressed similar levels of surface RANK compared with DC isolated from peripheral lymphoid tissues, DC from the distinct anatomical sites displayed differential responsiveness to RANK engagement with soluble RANKL. Whereas splenic DC responded to RANKL stimulation with elevated IL-12 p40 mRNA expression, Peyer's patch DC instead preferentially displayed increased IL-10 mRNA expression. Our data also show that the in vivo functional capacity of mucosal DC can be modulated by RANKL. Treatment with RANKL in vivo at the time of oral administration of soluble OVA enhanced the induction of tolerance in two different mouse models. These studies underscore the functional differences between mucosal and peripheral DC and highlight a novel role for RANK/RANKL interactions during the induction of mucosal immune responses.  相似文献   

10.
Dendritic cells (DCs) act as sentinels in peripheral tissues, continuously scavenging for antigens in their immediate surroundings. Their involvement in T cell responses is generally thought to consist of a linear progression of events, starting with capture of antigen in peripheral tissues such as the skin followed by migration to draining lymphoid organs and MHC-restricted presentation of antigen-derived peptide to induce T cell priming. The role of tissue-derived DCs in the direct priming of immune responses has lately been challenged. It now appears that, at least in some instances, a non-migratory subtype of DCs in the secondary lymphoid tissue presents tissue-derived antigen to T cells. Here, we review recent developments in research on DC function in the priming of immune responses.  相似文献   

11.
In this study, we examine whether native cholera toxin (nCT) as a mucosal adjuvant can support trinitrophenyl (TNP)-LPS-specific mucosal immune responses. C57BL/6 mice were given nasal TNP-LPS in the presence or absence of nCT. Five days later, significantly higher levels of TNP-specific mucosal IgA Ab responses were induced in the nasal washes, saliva, and plasma of mice given nCT plus TNP-LPS than in those given TNP-LPS alone. High numbers of TNP-specific IgA Ab-forming cells were also detected in mucosal tissues such as the nasal passages (NPs), the submandibular glands (SMGs), and nasopharyngeal-associated lymphoreticular tissue of mice given nCT. Flow cytometric analysis showed that higher numbers of surface IgA+, CD5+ B cells (B-1a B cells) in SMGs and NPs of mice given nasal TNP-LPS plus nCT than in those given TNP-LPS alone. Furthermore, increased levels of IL-5R alpha-chain were expressed by B-1a B cells in SMGs and NPs of mice given nasal TNP-LPS plus nCT. Thus, CD4+ T cells from these mucosal effector lymphoid tissues produce high levels of IL-5 at both protein and mRNA levels. When mice were treated with anti-IL-5 mAb, significant reductions in TNP-specific mucosal IgA Ab responses were noted in external secretions. These findings show that nasal nCT as an adjuvant enhances mucosal immune responses to a T cell-independent Ag due to the cross-talk between IL-5Ralpha+ B-1a B cells and IL-5-producing CD4+ T cells in the mucosal effector lymphoid tissues.  相似文献   

12.
IgA immunoblasts can seed both intestinal and nonintestinal mucosal sites following localized mucosal immunization, an observation that has led to the concept of a common mucosal immune system. In this study, we demonstrate that the mucosae-associated epithelial chemokine, MEC (CCL28), which is expressed by epithelia in diverse mucosal tissues, is selectively chemotactic for IgA Ab-secreting cells (ASC): MEC attracts IgA- but not IgG- or IgM-producing ASC from both intestinal and nonintestinal lymphoid and effector tissues, including the intestines, lungs, and lymph nodes draining the bronchopulmonary tree and oral cavity. In contrast, the small intestinal chemokine, TECK (CCL25), attracts an overlapping subpopulation of IgA ASC concentrated in the small intestines and its draining lymphoid tissues. Surprisingly, T cells from mucosal sites fail to respond to MEC. These findings suggest a broad and unifying role for MEC in the physiology of the mucosal IgA immune system.  相似文献   

13.
Since most human immunodeficiency virus (HIV) infections are initiated following mucosal exposure to the virus, the anatomic containment or abortion of an HIV infection is likely to require vaccine-elicited cellular immune responses in those mucosal sites. Studying vaccine-elicited mucosal immune responses has been problematic because of the difficulties associated with sampling T lymphocytes from those anatomic compartments. In the present study, we demonstrate that mucosal cytotoxic T lymphocytes (CTL) specific for simian immunodeficiency virus (SIV) and simian HIV can be reproducibly sampled from intestinal mucosal tissue of rhesus monkeys obtained under endoscopic guidance. These lymphocytes recognize peptide-major histocompatibility complex class I complexes and express gamma interferon on exposure to peptide antigen. Interestingly, systemic immunization of monkeys with plasmid DNA immunogens followed by live recombinant attenuated poxviruses or adenoviruses with genes deleted elicits high-frequency SIV-specific CTL responses in these mucosal tissues. These studies therefore suggest that systemic delivery of potent HIV immunogens may suffice to elicit substantial mucosal CTL responses.  相似文献   

14.
As inductive tissues for the initiation of antigen-specific T and B cell responses, the various mucosa-associated lymphoid tissues (MALT) of the aerodigestive tract, which include gut-associated lymphoid tissue (GALT), nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT), share many histological and immunological characteristics. However, recent advances in our molecular and cellular understanding of immunological development have revealed that the various types of MALT also exhibit different molecular and cellular interactions for their organogenesis. In this review, we delineate the distinctive features of GALT, NALT and BALT and seek to show the role played by those features in the regulation of mucosal tissue organogenesis, the mucosal immune system, and mucosal homeostasis, all in an attempt to provide insights which might lead to a prospective mucosal vaccine.  相似文献   

15.
Teleost intestinal immunology   总被引:1,自引:0,他引:1  
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4–5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-?+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.  相似文献   

16.
BACKGROUND: Acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infections are accompanied by a systemic loss of memory CD4 T cells, with mucosal sites serving as a major site for viral replication, dissemination and CD4 T cell depletion. Protecting the mucosal CD4 T cell compartment thus is critical to contain HIV, and preserve the integrity of the mucosal immune system. The primary objective of this study was to determine if systemic vaccination with DNA/rAd-5 encoding SIV-mac239-env, gag and pol could prevent the destruction of CD4 T cells in mucosal tissues. METHODS: Rhesus macaques were immunized with DNA/r-Ad-5 encoding SIV genes and compared with those immunized with sham vectors following high dose intravenous challenge with SIVmac251. SIV specific CD4 and CD8 T cell responses, cell associated viral loads and mucosal CD4 T cell dynamics were evaluated. RESULTS: Strong SIV specific immune responses were induced in mucosal tissues of vaccinated animals as compared with sham controls. These responses expanded rapidly following challenge suggesting a strong anamnestic response. Immune responses were associated with a decrease in cell associated viral loads, and a loss of fewer mucosal CD4 T cells. Approximately 25% of mucosal CD4 T cells were preserved in vaccinated animals as compared with <5% in sham controls. These results demonstrate that systemic immunization strategies can induce immune responses in mucosal tissues that can protect mucosal CD4 T cells from complete destruction following challenge. CONCLUSIONS: Preservation of mucosal CD4 T cells can contribute to maintaining immune competence in mucosal tissues and provide a substantial immune benefit to the vaccinees.  相似文献   

17.
Secretory immunoglobulin A: from mucosal protection to vaccine development   总被引:4,自引:0,他引:4  
Immune responses taking place in mucosal tissues are typified by secretory immunoglobulin A (S-IgA) molecules, which are assembled from proteins expressed in two cell lineages. The heavy and light chains as well as the J chain are produced in plasma cells, whereas the secretory component (SC) is associated to the immunoglobulin complex during transcytosis across the epithelial layer. S-IgA antibodies represent the predominant immunoglobulin class in external secretions, and the best defined entity providing specific immune protection for mucosal surfaces by blocking attachment of bacteria and viruses. S-IgA constitutes greater than 80% of all antibodies produced in mucosa-associated lymphoid tissues in humans. The existence of a common mucosal immune system permits immunization on one mucosal surface to induce secretion of antigen-specific S-IgA at distant sites. In addition, S-IgA antibodies not only function in external secretions, but also exert their antimicrobial properties within the epithelial cell during transport across the epithelium. Passive mucosal delivery of monoclonal IgA molecules neutralizes pathogens responsible for gastrointestinal and respiratory infections. Mucosal and systemic immunity can be achieved by orally administered recombinant S-IgA molecules carrying a protective bacterial epitope within the SC polypeptide primary sequence.  相似文献   

18.
Glycoprotein B mediates the absorption and penetration of the pseudorabies virus in the form of an immunodominant Ag, and represents a major target for the development of new vaccines. This study evaluated the efficiency of live attenuated Salmonella typhimurium SL7207 for the oral delivery of DNA vaccine encoding the pseudorabies virus glycoprotein B (pCI-PrVgB) in vivo, leading to the generation of both systemic and mucosal immunity against the pseudorabies virus Ag. An oral transgene vaccination of pCI-PrVgB using a Salmonella carrier produced a broad spectrum of immunity at both the systemic and mucosal sites, whereas the intramuscular administration of a naked DNA vaccine elicited no mucosal immunoglobulin (Ig)A response. Interestingly, the Salmonella-mediated oral transgene vaccination of the pseudorabies virus glycoprotein B biased the immune responses to the Th2-type, as determined by the IgG2a/IgG1 ratio and the cytokine production profile. However, oral vaccination mediated by Salmonella harbouring pCI-PrVgB showed inferior protection to systemic immunization against virulent pseudorabies virus infection. The expression of transgene delivered by Salmonella bacteria in antigen-presenting cells of both the systemic and mucosal-associated lymphoid tissues was further demonstrated. These results highlight the potential use of live attenuated S. typhimurium for an oral transgene pseudorabies virus glycoprotein B vaccination to induce broad immune responses.  相似文献   

19.
Current knowledge of the development of the marsupial immune system, particularly in the context of lymphoid tissue development and the appearance of lymphocytes, has been examined and limitations identified. While primary lymphoid tissues like the thymus have been extensively studied, secondary lymphoid tissues such as the spleen and lymph nodes have been examined to a lesser extent, partly due to the difficulty of macroscopically identifying these structures, particularly in very small neonates. In addition, little research has been conducted on the mucosal‐associated lymphoid tissues; tissues that directly trap antigens and play an important role in the maturity of adaptive immune responses. Research on the development of the marsupial immune tissues to date serves as a solid foundation for further research, particularly on the mechanisms behind the development of the immune system of marsupials. With the recent sequencing and annotation of whole marsupial genomes, the current wealth of sequence data will be essential in the development of marsupial specific reagents, including antibodies, that are required to widen our specific knowledge of the complex marsupial immune system and its development. J. Morphol. 275:822–839, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号