首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Control of proteolysis in perifused rat hepatocytes   总被引:3,自引:0,他引:3  
The mechanism by means of which amino acids inhibit intrahepatic protein degradation has been studied in perifused rat hepatocytes. Proteolysis was extremely sensitive to inhibition by low concentrations of amino acids. A mixture of 0.5 mM leucine and 1-2 mM alanine, concentrations found in the portal vein of the rat after feeding, inhibited proteolysis to the same extent as a complete physiological mixture of amino acids. Inhibition by these two amino acids was accompanied by a rise in the intracellular concentrations of glutamate and aspartate, and was largely prevented by addition of glucagon, by addition of the transaminase inhibitor aminooxyacetate, or by omission of K+. Acceleration of proteolysis by K+ depletion was accompanied by a fall in intracellular glutamate caused by an increased rate of transport of this amino acid to the extracellular fluid. It is concluded that intracellular leucine, glutamate and aspartate are important elements in the control of hepatic protein degradation.  相似文献   

3.
4.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

5.
6.
7.
Comparison of rat heart preservation by simple storage in a cardioplegic solution at 4 degrees C (6 hr for group I; 15 hr for group II) and by hypothermic low-flow perfusion of the same solution (0.3 ml min-1, 15 hr: group III) was performed by measuring biochemical and functional parameters and by collecting 31P-NMR spectroscopy data. When compared to control values, adenine nucleotide levels remained unchanged in group I hearts, while glycogen was 45% hydrolyzed and lactate level increased by 700%. Extension of heart immersion to 15 hr (group II) led to breakdown of ATP (-77%), of the sum of adenine nucleotides (-27%), and of glycogen (-77%), whereas lactate accumulation reached 900% of the control value. Functional recovery, measured at the end of a 60-min reperfusion was less than 10% in group II hearts when compared to group I hearts. This dramatic development was completely avoided by hypothermic low-flow perfusion (group III). 31P-NMR data showed that phosphocreatine was completely degraded in all groups of preserved hearts. Low-flow perfusion limited cellular acidosis. The ATP/Pi (Pi = inorganic phosphate) ratio calculated from NMR data was lower for group II hearts (0.04 +/- 0.01, n = 6) than for group I hearts (0.29 +/- 0.12; n = 6) or group III hearts (0.19 +/- 0.09; n = 6) and could constitute a convenient bioenergetic index to predict the capability of the heart to recover satisfactory contractility following a preservation period.  相似文献   

8.
9.
The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation.  相似文献   

10.
31P-NMR spectra of intact larvae and pupae of Drosophila melanogaster have been obtained at 109.3 MHz. A major resonance in these samples has been identified as tyrosine-O-phosphate. Its chemical shift reflects the hemolymph plasma pH. Upon disruption of the organisms (necessary for chemical analyses of tyrosine-O-phosphate), phosphatases rapidly hydrolyze this phosphate ester, generating inorganic phosphate and free tyrosine.  相似文献   

11.
We have reported previously that, when exposed to hypercapnia of various intensities, the diaphragm reduces its force of twitch and tetanic contractions in the in vitro rat preparation as well as in the in vivo dog preparation. The experiments reported here with 31P nuclear magnetic resonance (31P-NMR) spectroscopy attempt to examine cellular mechanisms that might be responsible for this deterioration in mechanical performance. Specifically they describe certain characteristics of this preparation and cautions needed to study the resting in vitro rat diaphragm with such techniques. Second, they report the response of intracellular pH (pHi), phosphocreatine (PCr), ATP, and inorganic phosphate (Pi) in the resting in vitro rat diaphragm exposed to long-term normocapnia or to long-term hypercapnia. The results show that 1) to maintain a viable preparation, it was necessary to keep the diaphragm extended to an area approximating that at functional residual capacity, 2) the diaphragm seemed quite capable of maintaining a constant pHi and constant contents of ATP and Pi during normocapnia, but there was a gradual decline in PCr, and 3) during hypercapnia there was a significant decrease in pHi, but the behavior of the phosphate metabolites was exactly as during normocapnia. The results suggest that the decrease in mechanical performance of the diaphragm is probably not due to a decrease in the availability of the high-energy phosphates, although they do not completely exclude this possibility or possibilities related to regional compartmentation.  相似文献   

12.
Buffering capacity of most tissues is composed of both rapid and slow phases, the latter presumably due to active acid extrusion. To examine the time course of brain buffering the brain pH of Sprague-Dawley rats was measured using 31P-nuclear magnetic resonance. The effect on brain pH of 30- or 58-min exposures to 20% CO2 followed by 30- or 38-min recovery periods, respectively, was studied. Brain pH reached its lowest value after a 15-min exposure to elevated CO2, thereafter slowly and steadily increasing. During recovery brain pH rose rapidly in the first 5 min exceeding control brain pH by 0.08 pH units. Brain pH fell during the next 30 min despite increases in blood pH and decreases in blood CO2 tension. Calculated intrinsic brain buffering rose steadily threefold during the last 40 min of CO2 exposure and during the final 30 min of recovery. These data show that in rat brain there is a temporally late buffering process, most likely active acid extrusion, requiring greater than 30 min for full activation and at least 30 min for discontinuation.  相似文献   

13.
14.
We describe a system in which proliferating human breast cancer cells are monitored by NMR spectroscopy for at least 6 days in basement membrane gel (BMG)1 threads. The cells are perfused under standard sterile cell culture conditions. 31P-NMR spectra obtained continuously for up to 64 h showed an increase in the signals owing to an increasing number of cells. Cell division in the BMG is easily observed by microscope or by the human eye as the gel opacifies. Spectra of cells in the BMG threads at 20% confluency show a more rapid signal increase than at 60% confluency. Cells grown in vivo in nude mice show a spectrum markedly similar to in vitro spectra in BMG threads, whereas the same cells in agarose threads lack peaks owing to Pi, glycerophosphocholine, and glycerophosphoethanolamine. With the high resolution obtained from this system we distinguished intracellular from extracellular Pi in vitro, and found that the intracellular pH is equal to that observed in the same cell line in vivo. This cell-BMG system is in effect a model tumor, but it is composed of a homogeneous cell population that can be observed indefinitely as the cells reproduce. The material needed is inexpensive, the technique is simple and efficient, and no adaptation of the spectrometer is required. This model will be useful for studying intracellular metabolism and the interaction of cells with the basement membrane.  相似文献   

15.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

16.
31P-Nuclear magnetic resonance was used to monitor in situ phosphorus containing compounds in mammary tumors after photodynamic therapy, consisting of administration of hematoporphyrin derivative followed by photoradiation of the lesion. A rapid decrease in ATP along with an increase in Pi resonance intensities was observed. The beta-ATP/Pi ratio decreased by 1 hour, dropping in 2 to 8 hours to 0 to 20 percent of that found prior to photoradiation. Disrupted cells and pycnotic nuclei were observed 48 to 72 hours after photoradiation to a depth of approximately 5 mm. Together with previous studies in vitro, reduction in tumor ATP levels appears to be an early biochemical response to photodynamic therapy.  相似文献   

17.
We now report a mouse model system of brain tumor for 31P-NMR spectroscopic study of in vivo cerebral metabolism. In vivo 31P-NMR (109 MHz) spectra were taken on the 9th day by the Faraday shield method of the brain of mice (3-week-old) transplanted intracerebrally with mKS X A tumor cells. In tumor-bearing mice, the amount of creatine phosphate decreased markedly and that of inorganic phosphate plus sugar phosphate increased accordingly. Furthermore, the broadening and splitting of individual signals were also noted with tumor-bearing mice; this is interpreted as indicating a variety of changes in chemical shift occurring in the brain of the animals due to heterogeneous distribution of pH. Binding or detaching of divalent cations to and from phosphometabolites may also be responsible for these changes.  相似文献   

18.
19.
An important application of primary hepatocyte cultures is for hepatotoxicity research. In this paper, gel entrapment culture of rat hepatocytes in miniaturized BAL system were evaluated as a potential in vitro model for hepatotoxicity studies in comparison to monolayer cultures. After exposure for 24 and 48 h to acetaminophen (2.5 mM), gel entrapped hepatocytes were more severely damaged than hepatocyte monolayer detected by methyl thiazolyl tetrazolium (MTT) reduction, intracellular glutathione (GSH) content, reactive oxygen species (ROS) levels, urea genesis and albumin synthesis. CYP 2E1 activities detected by 4-nitrocatechol (4-NC) formation were higher in gel entrapped hepatocytes than in hepatocyte monolayers while the addition of CYP 2E1 inhibitor, diethyl-dithiocarbamate (DDC), more significantly reduced acetaminophen-induced toxicity in gel entrapped hepatocytes. In addition, protective effects of GSH, liquorice extract and glycyrrhizic acid against acetaminophen hepatotoxicity were clearly observed in gel entrapped hepatocytes but not in hepatocyte monolayer at an incubation time of 48 h. Overall, gel entrapped hepatocytes showed higher sensitivities to acetaminophen-induced hepatotoxicity than hepatocyte monolayer by a mechanism that higher CYP 2E1 activities of gel entrapped hepatocytes could induce more severe acetaminophen toxicity. This indicates that gel entrapped hepatocytes in hollow fiber system could be a promising model for toxicological study in vitro.  相似文献   

20.
We have investigated the metabolic adaptations that occur in the thyroxine-treated rat heart. Rats were made hyperthyroid by daily intra-peritoneal injections of thyroxine (35 micrograms/100 g body weight) over seven days. 31P-NMR investigations of isolated glucose-perfused isometric hearts showed that thyroxine treatment caused an increase in Pi (from 4.9 mumols.(g dry wt.)-1 in control hearts to 11.7 mumols.(g dry wt.)-1 in hyperthyroid hearts), a decrease in phosphocreatine (from 36.5 mumols.(g dry wt.)-1 to 21.8 mumols.(g dry wt.)-1) with no change in ATP or ADP concentrations under the same conditions of cardiac work. The unidirectional exchange flux Pi----ATP was measured by saturation transfer NMR in hyperthyroid rat hearts. This exchange (which has been shown to contain a significant glycolytic component) increased by 2.2-fold in thyroxine-treated hearts in comparison to control hearts (to 3.6 mumols.(g dry wt.)-1.s-1, from 1.6 mumols.(g dry wt.)-1.s-1). In parallel experiments, NMR analysis of extracts from hyperthyroid rat hearts showed significantly elevated levels of glucose 6-phosphate, and fructose 6-phosphate. Measurements of enzyme activities isolated from hyperthyroid and control tissue showed a 40% increase in phosphofructokinase activity. These data together with the increased concentration of Pi show that both glycolytic and glycogenolytic fluxes are increased in the hyperthyroid rat heart. This metabolic adaptation may be necessary to cope with the increased number and activity of Na+/K(+)-ATPase pumps that occur in response to thyroxine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号