首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied functional recovery of leg posture and walking behaviour in the femur-tibia joint control system of stick insects. Leg extensions in resting animals and during walking are produced by different parts of a single extensor muscle. (a) Ablation of the muscle part responsible for fast movements prevented leg extension during the swing phase. Resting posture remained unaffected. Within a few post-operative days, extension movements recovered, provided that sensory feedback was available. Extension movements were now driven by the muscle part which in intact animals controls the resting posture only. (b) Selective ablation of this (slow) muscle part affected the resting posture, while walking was unaffected. The resting posture partly recovered during subsequent days. To test the range of functional recovery and underlying mechanisms, we additionally transected muscle motor innervation, or we inverted or ablated sensory feedback. We found that recovery was based on both muscular and neuronal mechanisms. The latter required appropriate sensory feedback for the process of recovery, but not for the maintenance of the recovered state. Our results thus indicate the existence of a sensory template that guides recovery. Recovery was limited to a behavioural range that occurs naturally in intact animals, though in different behavioural contexts.  相似文献   

2.
An investigation has been made of the way, in which the height of the body of an insect (Carausius morosus) is controlled when walking over an uneven terrain. The animals have been filmed from the side while walking over different types of irregularity (step up, step down, obstacle, ditch). A frame by frame analysis of the height of the three thoracic segments of the insect has been performed. A computer model has been set up, which is able to describe the experimental results within the exactness of measurement. This model consists of three independent height controllers, each having a unique characteristic. The coupling of these three controllers is performed mechanically. One possible interpretation of this model is that the height of each segment is controlled by a closed loop mechanism with a proportional element as a controller.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

3.
Hind legs with crossed receptor-apodemes of the femoral chordotonal organ when making a step during walking often do not release the ground after reaching the extreme posterior position. After putting a clamp on the trochanter (stimulation of the campaniform sensilla) the leg is no longer protracted during walking. However, during searching-movements the same leg is moved very far forwards. The anatomical situation of the campaniform sensilla on the trochanter and the sensory innervation of the trochanter is described. After removal of the hair-rows and continuously stimulating the hair-plate at the thorax-coxa-joint the extreme anterior and posterior positions of the leg in walking are displaced in the posterior direction. Front and middle legs operated in this way sometimes do not release the ground at the end of retraction. In searching-movements the same leg is moved in a normal way. If only one side of a decerebrated animal goes over a step, then on the other side a compensatory effect is observed. The main source of this compensatory information appears to be the BF1-hair-plates. If the animal has to drag a weight the extreme anterior and posterior positions of the middle and hind legs are displaced in the anterior direction. Crossing the receptor-apodeme of the femoral chordotonal organ, when it causes the leg to remain in the protraction phase, displaces the extreme posterior position of the ipsilateral leg in front of the operated one in the posterior direction. Influences of different sources on the extreme posterior position can superimpose. A model is presented which combines both a central programme and peripheral sensory influence. The word programme used here means that it does not only determine the motor output but also determines the reactions to particular afferences. The fact that the reaction to a stimulus depends on the internal state of the CNS is also represented by the model.Supported by Deutsche Forschungsgemeinschaft  相似文献   

4.
When a multi-legged animal walks over uneven surfaces, each leg has to span a different distance between body and ground. Thus the animal has to solve the problem of how to control the body height, i.e. to coordinate the movement of the legs in such a way that the vertical projections of leg lengths match these distances. For the standing animal, this is investigated here by testing twelve different substrate configurations and measuring body height and forces applied by the legs on the substrate. The results are consistent with the hypothesis that the legs can be considered to represent independent height controllers. They can be understood as proportional controllers with nonlinear characteristics. The mechanical coupling between the leg is sufficient to explain the experimental results. Thus, no neuronal coupling has to be assumed to exist between these controllers. This agrees with a hypothesis proposed earlier for walking animals (Cruse 1976).  相似文献   

5.
Ejaz A  Lange AB 《Peptides》2008,29(2):214-225
The dorsal vessel of the Vietnamese stick insect, Baculum extradentatum, consists of a tubular heart and an aorta that extends anteriorly into the head. Alary muscles, associated with the heart, are anchored to the body wall with attachments to the dorsal diaphragm. Alary muscle contraction draws haemolymph into the heart through incurrent ostia. Excurrent ostia lie on the dorsal vessel in the last thoracic and in each of the first two abdominal segments. Muscle fibers are associated with these excurrent ostia. Crustacean cardioactive peptide (CCAP)- and proctolin-like immunoreactivity is present in axons of the segmental nerves that project to the dorsal vessel, and in processes extending over the heart and alary muscles. Proctolin-like immunoreactive processes are also localized to the valves of the incurrent ostia and to the excurrent ostia. Neither the link nerve neurons, nor the lateral cardiac neurons, stain positively for these peptides. Physiological assays reveal dose-dependent increases in heart beat frequency in response to CCAP and proctolin. Isolating the dorsal vessel from the ventral nerve cord led to a change in the pattern of heart contractions, from a tonic, stable heart beat, to one which was phasic. The tonic nature was restored by the application of CCAP.  相似文献   

6.
7.
Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture and movement of the femur-tibia joint, was stimulated, and the responses of the tibial motoneuron pools of the other legs were recorded. In resting animals, fCO signals did not affect motoneuronal activity in neighboring legs. When the locomotor system was activated and antagonistic motoneurons were bursting in alternation, fCO stimuli facilitated transitions from flexor to extensor activity and vice versa in the contralateral leg. Following pharmacological treatment with picrotoxin, a blocker of GABA-ergic inhibition, the tibial motoneurons of all legs showed specific responses to signals from the middle leg fCO. For the contralateral middle leg we show that fCO signals encoding velocity and position of the tibia were processed by those identified local premotor nonspiking interneurons known to contribute to posture and movement control during standing and voluntary leg movements. Interneurons received both excitatory and inhibitory inputs, so that the response of some interneurons supported the motoneuronal output, while others opposed it. Our results demonstrate that sensory information from the fCO specifically affects the motoneuronal activity of other legs and that the layer of premotor nonspiking interneurons is a site of interaction between local proprioceptive sensory signals and proprioceptive signals from other legs.  相似文献   

8.
9.
The feed back mechanism subserving the regulation of the body-substrate-distance in the stick insect Carausius morosus has been investigated by means of step-like stimuli. Based on the results obtained in open-loop experiments a model is developed which describes the results obtained under closed loop conditions. When the experimental animal is pushed or pulled in dorso-ventral direction an initial fast and a subsequent very slow change of the body height z over the substrate are observed. The late slow response is a nearly linear function of time and can last for more than one hour if the animal is pulled with moderate forces. It withstands less effectively if pushed. During the slow phase of the response sudden changes of z and of the slope of the z(t)-curves occur, presumably due to corresponding changes of the amplification within the feed back loop.  相似文献   

10.
Each leg of a standing stick insect acts as a height controller. The leg contains several joints. Most of these joints are known to be controlled by feedback loops which are the basis of resistance reflexes (review Bässler 1983). This leads to the question of whether the resistance reflex of the whole leg can be understood as a simple, vectorial sum of the individual reflexes provided by the different joints, or whether additional properties emerge by simultaneous stimulation of several joints. Force measurements were performed while passively moving the middle leg tarsus of a fixed stick insect (Carausius morosus) stepwise to different positions. From the dynamic and static forces the torques developed by each joint were calculated. They were compared with the torques developed when only a single joint was moved by the same amount. The comparison shows that for a large range of positions there are no differences between both situations. Differences occur in two cases. First, the muscle system controlling the coxa-trochanter joint seems to be more strongly excited when the entire leg is moved than when only the one joint is moved. This change increases the linearity of the whole system for small deviations from the zero position. Second, the torque developed by the extensor tibiae system for negative steps (corresponding to increased body height), and the levator of coxa and trochanter for positive steps, decreases rather than increases when the whole leg is moved to extreme positions. This contributes to a decrease in the slope of the force-height characteristic and thus to a more non-linear behaviour of the whole system for the extreme positions. It is well known that the amplification factors of resistance reflexes in the leg show a large variation (Bässler 1972a; Kittmann 1991). Our results indicate that any change of the amplification factor influences the reflexes in all leg joints in the same way.  相似文献   

11.
12.
Leg movements of stick insects (Carausius morosus) making turns towards visual targets are examined in detail, and a dynamic model of this behaviour is proposed. Initial results suggest that front legs shape most of the body trajectory, while the middle and hind legs just follow external forces (Rosano H, Webb B, in The control of turning in real and simulated stick insects, vol. 4095, pp 145–156, 2006). However, some limitations of this explanation and dissimilarities in the turning behaviour of the insect and the model were found. A second set of behavioural experiments was made by blocking front tarsi to further investigate the active role of the other legs for the control of turning. The results indicate that it is necessary to have different roles for each pair of legs to replicate insect behaviour. We demonstrate that the rear legs actively rotate the body while the middle legs move sideways tangentially to the hind inner leg. Furthermore, we show that on average the middle inner and hind outer leg contribute to turning while the middle outer leg and hind inner leg oppose body rotation. These behavioural results are incorporated into a 3D dynamic robot simulation. We show that the simulation can now replicate more precisely the turns made by the stick insect. This work was supported by CONACYT México and the European Commission under project FP6-2003-IST2-004690 SPARK.  相似文献   

13.
Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique (SIT) is now a major component of many large and successful programs for pest suppression and eradication. Adult insects, and their different developmental stages, differ in their sensitivity to the induction of dominant lethal mutations, and care has to be taken to identify the appropriate dose of radiation that produces the required level of sterility without impairing the overall fitness of the released insect. Sterility can also be introduced into populations through genetic mechanisms, including translocations, hybrid incompatibility, and inherited sterility in Lepidoptera. The latter phenomenon is due to the fact that this group of insects has holokinetic chromosomes. Specific types of mutations can also be used to make improvements to the SIT, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stage of development, the males can be separated from the females. In one major insect pest, Ceratitis capitata, these strains are used routinely in large operational programs. This review summarizes these developments, including the possible future use of transgenic technology in pest control.  相似文献   

14.
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single exponential function, whereas the decay following faster movements had to be characterized by a double exponential function. (2) Each of the two corresponding time constants was independent of stimulus velocity. (3) The relative contribution of each function to the total amount of depolarization changed with stimulus velocity. (4) The characteristics described in (1)–(3) were also found in the slow extensor tibiae motoneuron. (5) Single electrode voltage clamp studies on interneuron E4 indicated that no voltage dependent membrane properties were involved in the generation of the observed time course of decay. Thus, we can trace back a certain behavior (catalepsy) to the properties of an identified, nonspiking interneuron.Abbrevations FETi fast extensor tibiae motor neuron - FT-joint femur-tibia joint - FT-control loop femur-tibia control loop - SETi slow extensor tibiae motor neuron - R regression coefficient  相似文献   

15.
The stick insect Carausius morosus maintains the distance between the substrate and its body. The underlying feed-back servo mechanism has been analyzed in intact animals under open loop conditions by changing the body-substrate distance in a sinusoidal fashion. The center position z c has been varied as parameter and the force the animal elicits along its high axis has been measured. The response amplitude A is a nonlinear function of z c. This nonlinear relationship between A and z c is most probably caused by the relationship between the torque excerted at the joints and the measured force. The responses to sinusoidal stimulation reveal band-pass character of the feed-back loop. Due to the nonlinearity of the system the average value of the response to sinusoidal disturbances depends upon the frequency of modulation. The change of the average value with the frequency of modulation is partially due to cocontraction of the extensor and flexor muscles.  相似文献   

16.
The innervation pattern of the coxal part of the depressor trochanteris muscle is described. This muscle is located inside the coxa cavity and is innervated by motoneurones contained in nerve C2. Serial sections of nerve C2 reveal that nerve C2 contains 3 large neurones (8, 5, and 3 m in diameter) in addition to many small neurones. In extracellular nerve recordings from nerve C2 3 large spikes could be recorded, which can easily be classified according to their amplitudes. Combined intracellular muscle recordings and extracellular nerve recordings revealed the physiological characteristics of these motoneurones, which are referred to here as the fast depressor trochanteris (FDTr) motoneurone and the spontaneously active slow depressor trochanteris (SDTr) motoneurone. The third motoneurone could be identified as an inhibitory motoneurone. Because this motoneurone was also found in nerves nl2, nl3, nl5 and in nerve C1 (to the levator trochanteris muscle) it is referred to here as the common inhibitor (CI) motoneurone.The hypothesis that the trochanteral hairplate (trHP) is the only effective feedback transducer for the coxo-trochanteral control loop (Schmitz 1984, 1986) is confirmed by the nerve recordings from nerve C2, because no reflex response was measured after ablation of the trHP. In addition, shaving the trHP reduces the activity of the spontaneously active SDTr motoneurone.The frequency responses of the excitatory depressor motoneurones show that the spontaneous activity of the SDTr motoneurone is modulated by the stimulus over a wide range of stimulus frequencies up to 100 Hz and that the FDTr motoneurone is reflexly activated during the same phase of the stimulus as the SDTr motoneurone. Up to 20 Hz the maximum of the motoneurone activity leads the maximum of the movement by about 60 to 80 deg. This shows that nonlinear highpass filter properties of the coxotrochanteral control system, described on the basis of force measurements in an earlier paper (Schmitz 1986), can be found already on the level of the motoneurones.  相似文献   

17.
18.
19.
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号